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Abstract

We analyse the semiclassical d-dimensional Schrödinger operator in the continuum Hcont
S (λN) =

− 1
2 ∆+λ 2

NV discretized on a mesh with spacing proportional to 1/N . The semi-classical parameter
λN is chosen as λN = N1−γ , with γ ∈ (−1,1), so that N governs both the semiclassical and contin-
uum limit simultaneously. We prove that the corresponding discrete Schrödinger exhibits the same
spectral asymptotics as Hcont

S (λN), in the regime λN ≫ 1. Specifically, we prove that all eigenvalues
of the discrete operator converge to those of the continuum Hcont

S (λN), as λN → ∞. Beyond this
semi-classical domain, we further investigate the spectral asymptotics for γ ∈ R\(−1,1), thereby es-
tablishing a comprehensive theory that fully characterizes the eigenvalue behavior across all possible
values of γ ∈ R.

1 Introduction

The first part of this work is devoted to the analysis of the energy asymptotics of a d-dimensional dis-
crete Schrödinger operator in a combined semi-classical and continuum limit, cf. (1.7). Unlike other
approaches in this context [5, 6, 7, 11], we investigate a wide range of scalings, interlacing the semiclas-
sical parameter with the discretization one. This coupling yields a rich variety of asymptotic regimes for
the eigenvalues. In particular, we are able to pinpoint the precise region in parameter space where the
limiting behavior aligns with the semiclassical limit of a continuum Schrödinger operator in d dimen-
sions. More precisely, we rigorously show that, in the semi-classical regime λN ≫ 1, with λN = N1−γ for
γ ∈ (−1,1) the scaling parameter, all eigenvalues of the discrete Schrödinger operator exhibit the same
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asymptotic behavior as those of the continuum operator

Hcont
S (λN) =−1

2
∆+λ

2
NV,

where the potential V is suitably chosen. This result confirms the validity and appropriateness of our
scaling relation between the semi-classical parameter λN and the discretization mesh size 1/N, showing
that it effectively captures the classical limit of the continuous model through the discrete approximation.
Further analysis of Agmon-type estimates for eigenfunctions are deferred to our forthcoming companion
paper [9].

In the second part of the paper, we emphasize that our analysis on eigenvalue asymptotics extends
beyond the semi-classical regime. It not only identifies the interval (−1,1) as the true semiclassical
domain, but also classifies four additional regions where the spectral behavior deviates significantly.
Framed within this broader context, our study provides a unified understanding of the various limiting
regimes and underscores the role of the parameter γ in determining the spectral asymptotics.

1.1 Semiclassical analysis and discrete Schrödinger operators

We recall the usual semi-classical analysis for a Schrödinger operator in the continuum:

Hcont(h) =−h2

2
∆+V on L2(Rd), (1.1)

where ∆ is the usual Laplacian on R, and V is a potential defined as multiplication operator that satisfies
appropriate assumptions. The parameter h is a scaled and dimensionless version of Planck’s constant,
describing a classical theory in the regime h → 0. If we set λ = 1/h, we can rewrite (1.1) as

Hcont(h) = H(1/λN) =− 1
2λ 2 ∆+V =

1
λ 2 (−

1
2

∆+λ
2V ). (1.2)

We then define

Hcont
S (λ ) :=−1

2
∆+λ

2V. (1.3)

Notice that the behavior of H(h) (h → 0) is closely related to the behavior of Hcont
S (λN) (λN → ∞).

It is precisely the operator Hcont
S (λN) studied by Simon in [15, 16] together with the time dependent

Schrödinger equation

i
∂ψ

∂ t
= Hcont

S (λN)ψ.

In this work we consider a discretized version of Hcont
S (λN) defined in the following manner. We consider

a uniform mesh size δ and introduce a discrete Schrödinger operator Hδ (λ ) on ℓ2(δZ), defined by

Hδ (λ ) f (x) =− 1
2δ 2 ∑

|x−y|=δ

( f (y)− f (x))+λ
2V (x) f (x). (1.4)
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The continuum limit deals with the analysis of Hδ (λ ) as δ → 0 at fixed λ . Details on this limit can be
found in e.g. [5, 7]. In contrast, the classical limit concerns the regime h → 0, at fixed δ (see e.g. [3]).

In this work, we focus on δN := 1/N and λN := N1−γ for γ ∈ (−1,1) fixed. Thus, we do not take the limit
δ → 0 independently of λN , but consider the single limit N → ∞ obeying δN = 1/N and λN = N1−γ . In
other words, the limit we consider contemporarily describes the continuum as well as the semi-classical
limit. With these choices at hand, we rewrite Hδ (λN) as H(N), that is

H(N) f (x) =−N2

2 ∑
|x−y|= 1

N

( f (y)− f (x))+N2(1−γ)V (x) f (x), on ℓ2(Zd/N). (1.5)

The term −N2
∑|x−y|= 1

N
( f (y)− f (x)) = N2

∑|x−y|= 1
N
( f (x)− f (y)) is the discrete (necessarily positive)

Laplacian ∆disc (see e.g. [8]),

∆disc f (x) := N2
∑

|x−y|= 1
N

( f (x)− f (y)) = N2
∑
y∼x

( f (x)− f (y)) on ℓ2(Zd/N) (1.6)

In other words, H(N) now reads

H(N) =
1
2

∆disc +N2(1−γ)V on ℓ2(Zd/N). (1.7)

In Section 3 we provide an overview of the eigenvalue asymptotics of the other regimes of the parameter
γ , starting from H(N), cf. (1.7). In particular, we may identify a total number of five distinct limits with
the following characteristics for the eigenvalues

• γ > 1: corresponding to the continuum limit of the free discrete Laplacian ∆N , cf. (1.8), towards
the Laplacian −1

2 ∆ on L2(Rd);

• γ = 1: corresponding to the continuum limit of H(N) towards the operator H =−1
2 ∆+V ;

• γ ∈ (−1,1): corresponding to a semi-classical limit of the operator Hcont
S (λ ), with relevant result

stated in Theorem 1.2;

• γ =−1: corresponding to a purely discrete model, whose precise features depend on the particular
choice of the potential;

• γ <−1: corresponding to a semiclassical approximation of a discrete model.

In particular, the regime γ ∈ (−1,1) yields not only the semiclassical spectral asymptotics, but for this
choice of γ it also allows to perform exact Agmon estimates for the ground state, as it has been done in
[15] for continuum models. This constitutes the core focus of our second work.
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1.2 Mathematical setting and notations

For practical purposes, for any N ∈ N+ we introduce the following Laplacian ∆N on ℓ2(Zd):

∆N := N2
∑
y∼x

( f (x)− f (y)), on ℓ2(Zd) (1.8)

Notice that ∆N on ℓ2(Zd) precisely corresponds to ∆disc on ℓ2(Zd/N). With this notation at hand, the
Hamiltonian H(N), now seen as a sequence of operators on H = ℓ2(Zd) becomes

H(N) f (x) :=
1
2
(∆N f )(x)+λ

2
NVN(x) f (x), (1.9)

where VN : Z→Z satisfies VN(x) :=V (x/N) and V is a potential satisfying the following thre assumptions
below. We will stick to this notation in the calculations presented in the subsequent sections, as it
highlight the dependence on N, making the computation more explicit.

Assumption 1. The following conditions on V are required:

(1) V ∈C∞(Rd) and V ≥ 0.

(2) V has 1 ≤ κ <+∞ zeros , ai, . . .aκ , where

M(ai)
α,β := (∂xα

∂xβ
V )(ai) (1.10)

is strictly positive definite for all i = 1 · · ·κ; i.e. (ai)
κ
i=1 are non-degenerate minima for V .

(3) V is strictly positive at infinity, i.e. there exists a δ > 0 and R0 > 0 such that |x| > R0 implies
V (x)≥ δ .

NOTATION 1.1: The following notation is used throughout this paper.

• We will denote the generic Hamiltonian with potential satisfying Assumptions (1) by H(N). The
eigenfunctions and eigenenergies corresponding to H(N) will be denoted by Ωn(·,N), respectively
En(N), where, as before, n labels the number of eigenstates/eigenenergies in increasing order.

• Thanks to the first two assumptions in 1, the Hessians M(ai), can be diagonalized with strictly
positive eigenvalues ωα(ai)

2, for all 1 ≤ α ≤ d and i = 1, . . . ,κ . We define a set

{ d

∑
α=1

ωα(ai)(mα +
1
2
), m1, . . . ,md ∈ N, i = 1, . . . ,κ

}
, (1.11)

and we order its elements as e0(V )≤ e1(V )≤ . . . .

• We introduce the d-dimensional discrete harmonic oscillator Hamiltonian

Hharm(N) =
1
2

∆N +λ
2
NV harm

N ,
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with

V harm
N (x) :=

d

∑
α=1

ω2
αx2

α

2N2 ,

for some arbitrary ωα > 0, α = 1, . . . ,d. The eigenfunctions and eigenenergies corresponding to
the harmonic oscillator will be denoted by Ωharm

n (·,N), respectively Eharm
n (N). Here n = 0 denotes

the lowest eigenstate and lowest eigenenergy (i.e. the ground state), respectively; n = 1 the first
excited eigenstate and eigenenergy; and so on. Coherently with Eq. (1.11) we will order the
elements of

{
d

∑
α=1

ωα(mα +
1
2
), m1, . . . ,md ∈ N},

as e0(V harm)≤ e1(V harm)≤ . . . .

• For our analysis, cf. Section 2.2, we also need to introduce a modified oscillator, namely

H̃(N) =
1
2

∆N +λ
2
N

d

∑
α=1

Ṽα,N (1.12)

where

Ṽα,N(x) :=


ω2

αx2
α

2N2 if |xα |< ⌊NΘ⌋

ω4
αx4

α

2N2 if |xα | ≥ ⌊NΘ⌋
, (1.13)

for some Θ > 0 to be specified at a later stage. The pertinent eigenfunctions and eigenenergies
corresponding to H̃(N) will be denoted by Ω̃n(·,N), respectively Ẽn(N).

• The floor function ⌊x⌋ denotes the maximal integer lower than x, e.g. ⌊2.3⌋ = 2, while ⌊−0.7⌋ =
−1.

⋄

1.3 Main result

As mentioned in the introduction the Hamiltonian we consider is of the form

H(N) =
1
2

∆N +λ
2
NVN on ℓ2(Zd), (1.14)

with λN = N1−γ , for some γ ∈ R and VN(x) := V (x/N), where V is required to satisfy the Assumptions
1. We will analyze the asymptotic behavior of the discrete eigenvalues of the latter operator as N →+∞,
for all the possible values of γ in λN .

The main result of this paper consists in determining the correct interval of the parameter γ , to recover
the correct semiclassical properties observed in continuum models (see [17]). Specifically, we will prove
the following.
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THEOREM 1.2: (energy estimates)

Let H(N) be as in Eq. (1.14). Then, for γ ∈ (−1,1), H(N) has at least n-eigenvalues and it holds

limsup
N→+∞

En(N)

λN
= en(V ), for all n ≥ 0 (1.15)

where en(V ) has been defined in Eq. (1.11).

⋄

REMARK 1.3: Note that the energy levels en(V ) are precisely those obtained from a semi-classical limit
starting with Hcont

S (λN), with λN = N1−γ and γ ∈ (−1,1), cf. [17, Thm. 1.1]. This indeed confirms that
the coupled limit we take corresponds to the correct semi-classical regime of a Schrödinger operator in
the continuum.

⋄

To prove Theorem 1.2, in Section 2 we will first study a one dimensional harmonic oscillator and a
one dimensional modified oscillator, obtaining upper (§ 2.1) and lower bounds (§ 2.2) respectively for
the asymptotic values of their energies. These estimate, especially the lower bound one, will require the
introduction of new mathematical techniques, such as the Agmon-Allegretto-Piepenbrink criterion 2.5
and clever ways to modify the Hamiltonians at play. In particular, the lower bound will be presented in
the form of a theorem, i.e. Theorem 2.13. Subsequently, these bounds are extended to the d-dimensional
case through a straightforward argument.

The oscillator Hamiltonian will come in hand when estimating a generic Hamiltonian like (1.14),
since in the limit N →+∞, the eigenfunctions tend to localize around the minima of the potential, where
the problem can be reduced to the one of studying an harmonic oscillator. This is discussed in § 2.3 and
§ 2.2.

In Section 3 we will discuss the eigenvalue asymptotics for γ ∈ R, thereby extending our analysis for
γ ∈ (−1,1). In Sec. 4, we will discuss our results and possible extensions of this work. Appendix A
presents the proof of proposition A.1.

2 Energy estimates

In this section we prove Theorem 1.2. To do this, we will start with a preliminary analysis for the one-
dimensional harmonic oscillator. In particular, we will obtain the convergence of the ground state and
first excited energy levels to the continuous harmonic oscillator ones.

2.1 Upper bound for the ground and first excited state of the harmonic oscillator

We focus here on proving an upper bound for the energy level of a one dimensional harmonic oscillator.

Hharm(N) =
1
2

∆N +λ
2
NV harm

N (x), on ℓ2(Z)
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where

V harm
N (x) =

ω2

2
x2

N2 .

PROPOSITION 2.1:

Let Hharm(N) as above, and λN = N1−γ , γ ∈ (−1,1). The following upper bound holds true

limsup
N→∞

Eharm
0 (N)

λN
≤ ω

2
.

⋄

Proof. Let us introduce the normalized test function

ψ0(x) :=
1

C(0)
N

e−α
x2

N2 JN(x), C(0)
N :=

(
∑
x∈Z

e−2α
x2

N2 JN(x)2
)1/2

, (2.1)

where α ∈ O(λN) and JN is a cut-off function, obeying

JN(x) :=

1 if |x|< N1+δ

λ
1/2
N

0 otherwise
, (2.2)

for some arbitrarily small δ > 0.The coefficients (C(0)
N )2 can be estimated as follows. We take N suffi-

ciently large and estimate the sum by a Riemann integral from below, i.e.

(C(0)
N )2 = ∑

x∈Z

e−2α
x2

N2 JN(x)2 = 2 ∑
x∈Z+

e−2α
x2

N2 JN(x)2 −1 ≥ 2
∫

∞

0
e−2α

x2

N2 JN(x)2dx−1

= 2N
∫ Nδ /λ

1/2
N

0
e−2αx2

dx−1 =
2N

(2α)1/2

∫ Nδ (2α)1/2/λ
1/2
N

0
e−y2

dy−1, (2.3)

the latter following by a substitution of variables y = (2α)1/2x. Since α = O(λN)

Nδ (2α)1/2/λ
1/2
N → ∞, N → ∞.

Hence, the right-hand side of the above integral can be bounded by

2N
(2α)1/2

∫ Nδ (2α)1/2/λ
1/2
N

0
e−y2

dy−1 =
2N

(2α)1/2

(∫
∞

0
e−y2

dy−
∫

∞

Nδ (2α)1/2/λ
1/2
N

e−y2
dy
)
−1 ≥

Nπ1/2

(2α)1/2 −
2N

(2α)1/2

λ
1/2
N

2Nδ (2α)1/2 e−N2δ (2α)/λN −1 =
Nπ1/2

(2α)1/2 −O(e−DN2δ

)−1, (2.4)

for some constant D > 0. In this computation, we have used that for any positive c > 0∫
∞

c
e−y2

=
∫

∞

c

−1
2y

(−2y)e−y2
=

1
2c

e−c2 −
∫

∞

c

−1
−2y2 e−y2

dy ≤ 1
2c

e−c2
,
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i.e. we have taken c = Nδ (2α)1/2/λ
1/2
N . Finally, we observe that

λ
1/2
N

2Nδ (2α)1/2 e−N2δ (2α)/λN = O(e−DN2δ

),

justifying (2.4). It therefore follows that

(C(0)
N )2 ≥ π1/2N

(2α)1/2 −1−O(e−DN2δ

), as N → ∞.

We now proceed to estimate ⟨ψ0,x2/N2ψ0⟩ from above. Take N sufficiently large so that in a similar
fashion as done here above,

(C(0)
N )2⟨ψ0,x2/N2

ψ0⟩= 2(C(0)
N )2

∑
x∈Z

ψ
2
0 (x)x

2/N2 (2.5)

= 2(C(0)
N )2

⌊N/λ
1/2
N ⌋−1

∑
x=1

ψ
2
0 (x)x

2/N2 +2(C(0)
N )2

⌊Nδ /λ
1/2
N ⌋

∑
⌊N/λ

1/2
N ⌋+1

ψ
2
0 (x)x

2/N2 +O(λ−1
N )

≤ 2N
∫ Nδ /λ

1/2
N

0
e−2αx2

x2dx+O(λ−1
N )≤ 2N

(2α)3/2

∫ Nδ (2α)1/2/λ
1/2
N

0
e−y2

y2dx+O(λ−1
N )

≤ N
√

π

2(2α)3/2 +O(λ−1
N ). (2.6)

Note that the order O(λN) is stricly smaller than O(N/α3/2) since for α ∈ O(λN) we have

λN ·
√

π

25/2

N
α3/2 ≥ BN1/2+γ/2 →+∞, if γ >−1. (2.7)

For the Laplacian, we estimate in a similar manner as above the following quantity

(C(0)
N )2⟨ψ0,

1
2

∆Nψ0⟩=
N2

2 ∑
x∈Z

e−α
x2

N2 JN(x)
(

2e−α
x2

N2 JN(x)− e−α
(x+1)2

N2 JN(x+1)− e−α
(x−1)2

N2 JN(x−1)
)

(2.8)

≤ N2

2
(1− e−

α

N2 )+N2N
∫ Nδ /λ

1/2
N

0
e−2αx2

(2− e−α/N2
e−2α

x
N − e−α/N2

e2α
x
N )dx

≤ N3√π

(2α)1/2 (1− e−
α

2N2 )+
N2

2
(1− e−

α

N2 )+O(e−DN2δ

). (2.9)

Again, since −1 < γ < 1 and α ∈ O(λN), we have α/N2 → 0 as N → +∞, so that we can estimate
the exponentials appearing in the last line of Eq. (2.8) by Taylor expansion. After combining all these
estimates, we obtain

Eharm
0 (N)≤ ⟨ψ0,

1
2

∆Nψ0 +λ
2
NV harm

ψ0⟩ ≤
α

2
+λ

2
Nω

2 1
8α

+O(N1/2−3γ/2). (2.10)
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For large N this quantity is minimized by the value α = λNω/2 which gives

Eharm
0 (N)≤ 1

2
ωλN +O(N1/2−3γ/2), (2.11)

resulting in

limsup
N→∞

Eharm
0 (N)

λN
≤ ω

2
. (2.12)

REMARK 2.2: (Discrete limit) We remark that the proof of Prop. 2.1 could be extended easily for γ = 1,
i.e. λN ∈ O(N0), by removing the cut-off function JN from Eq. (2.1). Setting γ = 1 corresponds to taking
the purely continuum limit, without including the semiclassical one.

⋄

REMARK 2.3: (Excited energies) Following a similar scheme as in 2.1, it is quite easy to obtain an
estimate also for the nth excited energy level. We consider

ψn(x) : =
1

C(n
N

JN(x)Hn
(
x
√

λNω

N

)
e−

ωλN x2

2N2 , C(n)
N : =

(
∑
x∈Z

J2
N(x)Hn

(
x
√

λNω

N

)2e−
λN ωx2

N2
)1/2

, (2.13)

where Z ∋ x → Hn(x
√

λNω/N) is the discretization of the nth hermite polynomial. By simple estimates,
using the orthogonality of Hermite polynomials one deduces that

⟨ψn,ψm⟩= δn,m +O(N1/2−3γ/2), (2.14)

⟨ψn,Hharm(N)ψm⟩ ≤ δn,m(n+
1
2
)ωλN +O(N1/2−3γ/2). (2.15)

To perform these latter estimates one has to divide Z in a finite number of regions depending on whether
Z ∋ x → ψn(x)ψm(x), Z ∋ x → ψn(x)∆Nψm(x) and Z ∋ x → ψn(x)VN(x)ψm(x) are increasing or decreas-
ing functions, to estimate the summation involved in Eqs. (2.14),(2.15) with the corresponding integrals.
Then, using the Rayleigh-Riesz principle [19, Th. XIII.3], one obtains

limsup
N→∞

Eharm
n (N)

λN
≤ limsup

N→∞

1
λN

⟨ψn,Hharm(N)ψn⟩ ≤ (n+
1
2
)ω. (2.16)

⋄

2.2 Lower bound for the ground and first excited state for a modified harmonic oscillator

In this section, we derive a lower bound for the ground state and first excited state energies of a slightly
modified discrete harmonic oscillator. This analysis is motivated by the need to apply the Agmon–Allegretto-
Piepenbrink criterion (see below), which provides a powerful framework for obtaining such estimates.
However, applying this criterion directly to the standard harmonic oscillator is not straightforward. The
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main difficulty lies in the breakdown of the continuum approximation at large distances, which compli-
cates the use of Agmon-type estimates.

To address this issue, we introduce a modified potential that preserves the properties of the original
system: since the relevant quantum states are localized near the minima of the potential, any modification
at sufficiently large distances does not alter the essential physics. Instead, it allows us to circumvent the
limitations of the original potential at large scales.

We first recall the notion of a α-superharmonic function.

DEFINITION 2.4: For α ∈ R, we say that a function u ∈C(Z) is α-subharmonic, if

(L+α)u ≤ 0.

We say that u is α-superharmonic if −u is α-subharmonic, i.e., u satisfies

(L+α)u ≥ 0.

⋄

The Agmon–Allegretto-Piepenbrink criterion is now formulated as follows.

LEMMA 2.5: (Agmon–Allegretto–Piepenbrink)[8, Theorem 4.14]
Let α ∈ R and consider a discrete Schrödinger operator on ℓ2(Zd) with lowest eigenvalue E0(N). Then,
the following statements are equivalent:

(i) α ≥−E0(N).

(ii) There exists a strictly positive α-superharmonic function.

⋄

Estimate for the ground state Once we have fixed a value of γ ∈ (−1,1], we can prove:

PROPOSITION 2.6: Let δ > 0 be such that γ − 2δ > −1 and consider the one dimensional modified
oscillator (1.1)

H̃(N) =
1
2

∆N +λ
2
NṼN on ℓ2(Z),

where ṼN is defined by

ṼN(x) :=


ω2x2

2N2 if |x|< ⌊N1+γ−δ ⌋

ω2x4

2N2 if |x| ≥ ⌊N1+γ−δ ⌋
, (2.17)

and ω > 0 is a free parameter. Denote the ground state eigenvalue by Ẽ0(N). Then,

liminf
N→∞

Ẽ0(N)

λN
≥ ω

2
. (2.18)
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⋄

Proof. To prove the result we will apply the Agmon-Allegretto-Piepenbrink criterion. To this end, we
define Θ := 1+ γ −δ and consider the tentative supersolution

ψ(x) :=

e−λ ′
Nω

x2

2N2 if |x|< ⌊NΘ⌋

e−λ ′
Nω

⌊NΘ⌋2

2N2 if |x| ≥ ⌊NΘ⌋
, (2.19)

and λ ′
N := λN(1−ε) where 1> ε > 0 is as small as we like. In view of the Agmon-Allegretto-Piepenbrink

criterion, it is sufficient to prove that the function ψ is superharmonic with parameter α =−λ ′
N
2 . To see

this, for |x|< ⌊NΘ⌋ we write

H̃(N)ψ(x) =
(

1
2

∆N +
λ 2

Nω2

2
x2

N2

)
ψ(x) = e−λ ′

Nω
x2

2N2

[
N2

(
1− e−

λ ′N ω

2N2

2

(
eλ ′

Nω
x

N2 + e−λ ′
Nω

x
N2

))
+

λ 2
Nω2

2
x2

N2

]
.

(2.20)

Since for |x|< ⌊NΘ⌋,
λ ′

Nx
N2 ≤ N−δ → 0, as N →+∞,

we can expand the term inside the square brackets according to a Taylor series, and obtain

[
N2

(
1− e−

λ ′N ω

2N2

2

(
eλ ′

Nω
x

N2 + e−λ ′
Nω

x
N2

))
+

λ 2
Nω2

2
x2

N2

]
= (2.21)

λ ′
Nω

2
+ω

2(λ 2
N −λ

′2
N )

x2

2N2 −
λ ′4

N ω4x4

24N6 +
λ

′3
N ω3x2

4N4 +O(
λ 6

Nω6x6

N10 ) (2.22)

For N large enough and |x|< ⌊NΘ⌋,

ω
2(λ 2

N −λ
′2
N )

x2

2N2 −
λ ′4

N ω4x4

24N6 ≥ ω
2(1− (1− ε)2)N2−δ/2−ω

4N2−4δ/24 ≥ 0, (2.23)

so that, for this regime, (2.20) and (2.21) imply the inequality

(
1
2

∆N +
λ 2

Nω2

2
x2

N2 )ψ(x)≥ ψ(x)
λ ′

Nω

2
, (2.24)

whenever N is sufficiently large.

If |x| ≥ ⌊NΘ⌋+1, then ∆Nψ(x) = 0 and hence

(
N2

2
∆N +

λ 2
Nω2

2
x4

N2 )ψ(x)≥ e−λ ′
Nω

⌊NΘ⌋2

2N2
λ 2

Nω2

2
N4+2γ−4δ ≥ ψ(x)

λ ′
Nω

2
, (2.25)
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since 4+2γ −4δ > 2, which implies that ω2λNN2+4γ/3 ≥ λ ′
Nω , for N sufficiently large.

At the interface x = ⌊NΘ⌋, we have

(
N2

2
∆N +

λ 2
Nω2

2
x2

N2 )ψ(⌊NΘ⌋) = e−λ ′
Nω

⌊NΘ⌋2

2N2 [N2(1− 1
2
(1+ e−

λ ′N ω

2N2 eλ ′
Nω

⌊NΘ⌋
N2 ))+λ

2
Nω

2 ⌊NΘ⌋4

2N2 ]

≥ ψ(⌊NΘ⌋)(N4+2γ−4δ −CN2)≥ ψ(⌊NΘ⌋)λ ′
Nω

2
, (2.26)

where the last estimate has been performed by observing that

(1− 1
2
(1+ e−

λ ′N ω

2N2 eλ ′
Nω

⌊NΘ⌋
N2 ))≥−C,

for some positive C > 0 and
(N4+2γ−4δ −CN2)/λN

N→+∞−−−−→+∞.

In this way, we discover that ψ is a super solution with parameter −λ ′
Nω/2. Hence,

liminf
N→∞

Ẽ0(N)

λN
≥ ω(1− ε)

2
(2.27)

for the energy of the Hamiltonian with ṼN as a potential. Since now ε is arbitrary, we get

liminf
N→∞

Ẽ0(N)

λN
≥ ω

2
, (2.28)

as desired.

REMARK 2.7: We note that the choice λ ′
N = (1− ε)λN in (2.19) is necessary to guarantee the positivity

of Eq. (2.23). We could have also taken ε → εN := N−2δ , which would have given the stronger result,
for N large but fixed

Ẽ0(N)

λN
≥ 1

2
ω +O(

λN

N2δ
). (2.29)

⋄

Estimate for the first excited state
In the following proofs, we require an estimate for the energy of the first excited state of H̃(N). While
the Agmon–Allegretto–Piepenbrink criterion is effective for deriving lower bounds, it applies only to
the ground state and cannot be used directly in this case. Nevertheless, we can still make use of the
criterion by considering a suitably restricted Hamiltonian. The strategy involves several key ideas, which
we present in the form of a series of lemmas.

LEMMA 2.8: (Behavior of eigenfunctions close to zeros) Let Ω be an eigenfunction with eigenvalue E
for an generic discrete Hamiltonian H = ∆/2+V , then

12



a) Ω cannot be contemporaneously zero at two subsequent points.

b) If Ω(x̄) = 0, Ω(x̄−1) =−Ω(x̄+1) ̸= 0.

⋄

Proof. a) If by absurd Ω(x̄) = Ω(x̄+ 1) = 0, then, since Ω solves the Schrödinger equation, we would
have

0 = EΩ(x̄) = 2Ω(x̄)−Ω(x̄−1)−Ω(x̄+1)+V (x̄)Ω(x̄) =−Ω(x̄−1), (2.30)

so that Ω(x̄−1) = 0. By iteration, we discover that Ω is identically zero, which is absurd.
b) If Ω(x̄) = 0, exploiting again the eigenvalue equation we get that

Ω(x̄+1)+Ω(x̄−1) = 0, (2.31)

and since Ω(x±1) ̸= 0 by a), the two values of the eigenfunction must have opposite sign and the same
modulus.

The next lemma characterizes the behavior of the zeros of higher energy eigenstates.

LEMMA 2.9: (Zeros of excited states) Suppose we are given a discrete Hamiltonian H := ∆/2+V and
call its eigenvectors by Ωm. If the nth eigenfunction Ωn changes sign k times, then Ωn+1 changes sign at
least k+1 times.

⋄

Proof. Let us take x0 < x1 ∈ Z such that Ωn is positive in [x0,x1] and Ωn(x0 − 1), Ωn(x1 + 1) < 0.
Suppose by absurd that also Ωn+1 doesn’t change sign and, w.l.o.g., that it is positive in [x0,x1]. Then we
can compute

1
2

x1

∑
x=x0

(Ωn(x)∆Ωn+1(x)−Ωn+1(x)∆Ωn(x)) = (E1 −E0)
x1

∑
x=x0

Ωn(x)Ωn+1(x)> 0, (2.32)

where the equality is a consequence of the discrete Schrödinger equation for Ωn+1, Ωn. We can also
compute the sum explicitely by expanding the laplacians

x1

∑
x=x0

(
Ωn(x)∆Ωn+1(x)−Ωn+1(x)∆Ωn(x)

)
=

x1

∑
x=x0

(
Ωn(x+1)Ωn+1(x)+Ωn(x−1)Ωn+1(x)−Ωn+1(x+1)Ωn(x)−Ωn+1(x−1)Ωn(x)

)
= Ωn(x1 +1)Ωn+1(x1)+Ωn(x0 −1)Ωn+1(x0)−Ωn+1(x1 +1)Ωn(x1)−Ωn+1(x0 −1)Ωn(x0). (2.33)

If Ωn+1(x1 + 1) and Ωn+1(x0 − 1) were positive or zero, then, all four term in the last line of (2.33)
would be negative or zero, leading to a contradiction with the result in (2.32). So, either Ωn+1(x1 +1) or
Ωn+1(x0 −1)< 0.

13



If Ωn were positive (or negative) at x0 = x1 and negative (positive) outside, then, by the same argu-
ment, the only possibility for Ωn+1 is that Ωn+1(x0) = 0

Moreover, the same proof works if x0 = −∞ or x1 = +∞. So, starting from −∞, we discover that
Ωn+1 changes signs or is zero inside every interval where Ωn is either strictly positive or strictly negative.
So, the number of times Ωn+1 changes signs is equal to the number of intervals where Ωn has a definite
sign, that is k+1.

REMARK 2.10: Clearly the proof extend to the case in which Ωn has infinite zeros. In that case, the
previous argument shows that also Ωn+1 has infinite zeros.

⋄

We are now in a position to prove that the first excited state of H̃(N) is odd, with only one zero at
x = 0. Indeed, we can consider two new Hamiltonians H̃r(N) and H̃ℓ(N), defined respectively on Z+ : =
[1,+∞)∩Z and Z− : = (−∞,−1]∩Z:

H̃ℓ(N) : =
1
2
(∆N)|Z−

+λ
2
NṼN +

N2

2
δx,−1, (2.34)

H̃r(N) : =
1
2
(∆N)|Z+

+λ
2
NṼN +

N2

2
δx,1, (2.35)

where

(∆N)|Z+
g(1) : = g(1)−g(2),

(∆N)|Z+
g(x) : = 2g(x)−g(x−1)−g(x+1), x > 1, (2.36)

and similarly for (∆N)|Z−
. Here, δx,y denotes the Kronecker delta.

If f : Z → C is such that f (0) = 0, it is easy to verify that

H̃ℓ(N) f|Z−
(x) = H̃(N) f (x), (2.37)

H̃r(N) f|Z+
(x) = H̃(N) f (x). (2.38)

At this point, one can, at least in principle, solve the eigenvalue equations for H̃ℓ(N) and H̃r(N)
and find the strictly positive ground states Ω̃ℓ,0, Ω̃r,0 for the two Hamiltonians. By simple symmetry
reasoning, it is clear that Ωℓ,0(x,N) = Ωr,0(−x,N) and that their eigenvalues must coincide, that is, with
obvious notation, Ẽℓ(N) = Ẽr(N) := Ẽ(N). In the remaining of the proof we omit the second index N in
the definition of Ωℓ,0 and Ωr,0.

Coming back to the original problem, we define the following function on Z

ψ̃1(x) : =


1√
2
Ωℓ,0(x) x < 0

0 x = 0
− 1√

2
Ωr,0(x) x > 0

. (2.39)
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It is clear from (2.37), (2.38) and from the definition of ψ̃1 that

H̃(N)ψ̃1(x) = H̃ℓ(N)
1√
2

Ω̃ℓ,0(x) = Ẽ(N)Ω̃r,0(x) x ≤−1,

H̃(N)ψ̃1(x) = H̃r(N)
1√
2

Ω̃r,0(x) = Ẽ(N)Ω̃r,0(x) x ≥ 1,

H̃(N)ψ̃1(0) = 0 = ψ̃1(0)Ẽ(N) (2.40)

so that ψ̃1 is an eigenvector of H̃(N). Moreover, ψ̃1 has only one zero at x = 0, so, by lemma 2.9 it
necessarily coincides with the first excited state Ω̃1 with energy Ẽ(N) = Ẽ1(N). We have proved the
following:

PROPOSITION 2.11: Let H̃(N)=∆N/2+λ 2
NṼN be the modified Hamiltonian with potential (2.17). Then,

the first excited state is anti-symmetric and has only one zero at x = 0.

⋄

We proceed now to estimate from below the value of Ẽ1. To do this, we consider the Hamiltonian
H̃r(N) (equivalently, we could have also taken H̃ℓ(N)) and we employ the Agmon-Allegretto-Pieperbrink
criterion with super solution

φ(x) : =

xe−λ ′
Nω

x2

2N2 if 1 ≤ x < ⌊NΘ⌋

⌊NΘ⌋e−λ ′
Nω

⌊NΘ⌋2

2N2 x ≥ ⌊NΘ⌋
(2.41)

and parameter α =−3
2 λ ′

Nω , where as before, λ ′
N = λN(1− ε), for ε > 0 arbitrary small.

At this stage, it is sufficient to repeat the computations of the previous paragraph to verify that
H̃r(N)φ(x)≥ 3

2 ωλ ′
Nφ(x)+φ(x)o(λN).

For x > ⌊NΘ⌋ φ is constant, so, we only have the potential term

H̃r(N)φ(x) = φ(x)
λ 2

Nx4

2N2 ≥ φ(x)CN4+2γ−4δ ≥ 3
2

ωλ
′
Nφ(x), (2.42)

for N large enough.
At the interface x = ⌊NΘ⌋ we have

H̃(N)φ(⌊NΘ⌋)

=φ(⌊NΘ⌋)
[
N2(1− 1

2
(1+ e−ω

λ ′N
2N2 eωλ ′

N
⌊NΘ⌋

N2 (1− 1
⌊NΘ⌋

)))+ω
2 λ 2

N⌊NΘ⌋4

2N2

]
≥φ(⌊NΘ⌋)(ω2

2
N4+2γ−4δ −CN2)≥ φ(⌊NΘ⌋)3

2
ωλ

′
N . (2.43)

For 1 ≤ x < ⌊NΘ⌋, we get the following equation

H̃(N)φ(x) = φ(x)
[
N2(1+

1
2

e−
ωλ ′N
2N2 (e−

λN ωx
N2 (1+

1
x
)+(e

λN ωx
N2 (1− 1

x
)))+

λ 2
Nω2x2

2N2

]
. (2.44)
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We focus on the coefficient multiplying φ(x) and we expand in Taylor series for xλ ′
N/N2 N→+∞−−−−→ 0

N2(1+
1
2

e−
ωλ ′N
2N2 (e−

λN ωx
N2 (1+

1
x
)+(e

λN ωx
N2 (1− 1

x
)))+

λ 2
Nω2x2

2N2

=N2(1− 1
2
(1− ωλ ′

N

2N2 +
ω2λ ′2

N

8N4 +O(
λ ′3

N
N6 ))(2−2

ωλ ′
N

N2 +
ω2λ ′2

N x2

N4 −
ω3λ ′3

N x2

3N6 +O(
x4λ 4

N

N8 )))+
ω2λ 2

Nx2

2N2

=
3
2

ωλ
′
N +

ω2(λ 2
N −λ ′2

N )x2

2N2 +
5ω3λ ′3

N x2

12N4 −O(
x4λ 4

N

N6 +
λ ′2

N

N2 ). (2.45)

The previous computations establish that

Ẽ1(N)≥ 3
2

ωλ
′
N +o(λ ′

N) (2.46)

for N large enough. Thus, we can conclude that

liminf
N→∞

Ẽ1(N)

λN
≥ 3

2
ω(1− ε), (2.47)

and since ε is now arbitrary, we can send it to zero. Putting all together we have proved

PROPOSITION 2.12: Given the modified Hamiltonian H̃(N) with potential specified by (2.17), the first
excited energy satisfy the asymptotic lower bound

liminf
N→∞

Ẽ1(N)

λN
≥ 3

2
ω. (2.48)

⋄

Generalization for higher order eigenstates In this paragraph, we will prove the following theorem

THEOREM 2.13: Let H̃0(N) be the Hamiltonian for the modified harmonic oscillator with potential given
by (2.17). Then, it holds

liminf
N→+∞

Ẽn(N)

λN
≥ ω(n+

1
2
) (2.49)

⋄

The main idea behind the subsequent proofs is that if we are able to restrict the eigenvalue problem to
some subgraphs, call them {Zn

k,k+1}n
k=0, where the excited states can be taken strictly positive, the prob-

lem will be transformed into one of finding the correct ground state for some restricted Hamiltonians. We
will employ supersolutions consisting in a suitable discretization of the harmonic oscillator eigenstates.
As will be clear from the proof of Th. 2.13, the union of the subgraphs {Zn

k,k+1}n
k=0 cannot be equal

to the whole graph, since we have to remove the edges between points where the harmonic oscillator’s
solution is zero. The following discussion motivates the correct choice for the points we will remove.
For a continuous harmonic oscillator, normalized as follows

Hcont(N) =−N2

2
∆+

λ ′2
N ω2

2
x2, (2.50)
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we know that the nth eigenfunction is given, apart from a normalization factor, by

Ω
cont
n (x,N) = Hn(x

√
λNω

N
)e−

λN ωx2

2N2 , x ∈ R. (2.51)

We consider the discretization of these special functions

Z ∋ x → Hn(x

√
λ ′

Nω

N
)e−

λ ′N ωx2

2N2 . (2.52)

Now, we denote by {x̄n
k}n

k=1, the n zeros of the continuous hermite functions R∋ x→Hn(x
√

ωλ ′
N/N),

ordered as x̄n
k < x̄n

k+1. Moreover, we define α0
N :=

√
ωλ ′

N/N. It is clear that in general x̄n
k /∈ Z, however,

we know that Hn(⌊x̄n
k⌋α0

N) and Hn((⌊x̄n
k⌋+ 1)α0

N) have opposite signs. Suppose we remove the points
{⌊x̄n

k⌋}n
k=1 from Z and consider as an example the subgraph [⌊x̄n

k⌋+1,⌊x̄n
k+1⌋−1]∩Z. Suppose w.l.o.g.

that Hn(xα0
N) > 0 on [⌊x̄n

k⌋+ 1,⌊x̄n
k+1⌋]. Now, let us test a Laplacian with Dirichlet boundary conditon

with the tentative supersolution

ϕk(x) := Hn(xα
0
N)e

− (α0
N x)2

2 , x ∈ Z (2.53)

restricted to [⌊x̄n
k⌋+1,⌊x̄n

k+1⌋−1]∩Z. Then, for x = ⌊x̄n
k+1⌋−1 we have

∆ϕk(⌊x̄n
k+1⌋−1) = ϕk(⌊x̄n

k+1⌋−1)− 1
2

ϕk(⌊x̄n
k+1⌋−2)

≥ ϕk(⌊x̄n
k+1⌋−1)− 1

2

[
ϕk(⌊x̄n

k+1⌋−2)+ϕk(⌊x̄n
k+1⌋)

]
, (2.54)

where the last inequality uses that ϕk(⌊x̄n
k+1⌋) ≥ 0. Inequality (2.54) allows to recover the correct sym-

metry for the problem, which we had originally broken by imposing the Dirichlet boundary conditions.
However, at x = ⌊xn

k⌋+1 we have instead

∆ϕk(⌊x̄n
k⌋+1) = ϕk(⌊x̄n

k⌋+1)− 1
2

ϕk(⌊x̄n
k+1⌋+2), (2.55)

and we cannot recover the original Laplacian on Z,since ϕ(⌊x̄n
k⌋)/2 is negative and it cannot be added to

(2.55) if we search for a lower bound.
The correct way to proceed is to modify the supersolution (2.53) by rescaling its argument. We take

αk
N := (x̄n

k/⌊x̄n
k⌋)

√
λ ′

Nω/N and

φk(x) := Hn(xα
k
N)e

− (αk
N x)2

2 , x ∈ Z. (2.56)

Then, φk(⌊x̄n
k⌋) = 0 and

∆φk(⌊x̄n
k⌋+1) = φk(⌊x̄n

k⌋+1)− 1
2

[
φk(⌊x̄n

k+1⌋+2)+φk(⌊x̄n
k+1⌋)

]
, (2.57)

so that the correct Laplacian is recovered. Now,depending on the value of x̄n
k/⌊x̄n

k⌋, we could have
φk(⌊x̄n

k⌋) ≤ 0, however, this problem ca be solved by simply shifting the right boundary of [⌊x̄n
k⌋+

1,⌊x̄n
k+1⌋ − 1] to the left. The correct way of choosing the correct supersolutions and the subgraphs

is illustrated in the following definition:
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DEFINITION 2.14: (i) We denote by {x̄n
k}n

k=1, the ordered n zeros of the continuous hermite functions
R ∋ x → Hn(x

√
ωλ ′

N/N). Moreover, we call α0
N :=

√
ωλ ′

N/N.

(ii) If n = 1, we take

x1
0 :=−∞, x1

1 := 0, x1
2 :=+∞, Zn

0,1 := Z∩ (xn
0,x

n
1), Z1,2 := Z∩ (xn

1,x
n
2) (2.58)

(iii) For n > 1, we define a set of n+2 points, and n+1 subgraphs of Z as follows:

xn
0 =−∞, xn

1 := ⌊x̄n
1⌋, Zn

0 := Z∩ (−∞,xn
1), (2.59)

so that Hn(xn
1α0

N) and Hn((xn
1 + 1)α0

N) have the same sign. Then, for x̄n
2, we proceed by setting

α1
N := (x̄n

1/xn
1)
√

λ ′
Nω/N and

xn
2 := ⌊x̄n

2⌋− ℓ2, (2.60)

where ℓ2 ∈ N1 is the smallest natural number such that

(⌊x̄n
2⌋− ℓ2)

x̄n
1

xn
1
≤ x̄n

2. (2.61)

Then, we define the subgraph Zn
1,2 := Z∩ (xn

1,x
n
2). With these choices, we obtain that Hn(xn

1α1
N) =

0; moreover Hn((xn
2 − 1)α1

N) and Hn(xn
2α1

N) have the same sign. We continue with this construc-
tion: if x̄n

k ̸= 0 we define αk
N := (x̄n

k/xn
k)
√

λ ′
Nω/N; instead if x̄n

k = 0, αk
N :=

√
λ ′

Nω/N. Then
we set Zn

k,k+1 := Z∩ (xn
k ,x

n
k+1), where xn

k+1 is defined as above, to ensure that Hn(xn
kαk

N) = 0 and
Hn(xn

k+1αk
N) and Hn((xn

k+1 −1)αk
N) have the same sign.

⋄

Proof of Th. 2.13 . Consider the nth energy level Ẽn(N) and eigenstate Ω̃n. Consider now the points
{x̄n

k}n
k=1. All these points depend on N, and as N →+∞, they are of order O(

√
λ ′

N/N) (the same is true
for the points {xn

k}n
k=1).

Then, we define on ℓ2(Zn
k,k+1) the Hamiltonian

H̃k,k+1(N) :=
1
2

∆N |Zn
k,k+1

+λ
2
NṼN +

N2

2
δxn

k+1 +
N2

2
δxn

k+1−1, (2.62)

where the Laplacian ∆N |Zn
k,k+1

is taken with Dirichlet boundary conditions and we define δ±∞ := 0.
Clearly, if f ∈ ℓ2(Z) is such that f (xk) = f (xk +1) = 0, then

H̃(N) f (x) = H̃n
k,k+1(N) f |Zn

k,k+1
(x), x ∈ Zn

k,k+1. (2.63)

For every Hamiltonian H̃k,k+1(N), there exists a strictly positive and non degenerate ground state defined
in Zk,k+1. We will denote these ground states as Ωk

n, k ∈ {1, . . . ,n} and their energies as Ẽk
n . The idea

1note that, with this definition, ℓk can always be bounded from above by some integer independent from N.
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is that we can glue these solutions into one tentative eigenfunction ψ̃n. The latter will not satisfy an
eigenvalue equation for H̃(N) because it will have different energies for different regions of Z. However,
we plan to solve the opposite problem, that is, we will find the correct Hamiltonian for ψ̃n and use it to
estimate H̃(N).

We start by defining our wannabe eigenfunction ψ̃n ∈ ℓ2(Z)

ψ̃n(x) :=

{
ak

nΩk
n(x,N) x ∈ Zn

k,k+1

0 x ∈ {xn
1, . . . ,x

n
n}

, (2.64)

where the coefficients an
k are chosen so to satisfy

ak
nΩ

k
n(x

n
k ,N)+ak+1

n Ω
k+1
n (xn

k +1,N) = 0 (boundary condition at zeros), (2.65)
n

∑
k=0

[
(ak

n)
2
]
= 1 (normalization condition). (2.66)

Let us now take the smallest of the ground state energies

Ẽn(N) := min{Ẽ0
n , . . . , Ẽ

n
n}. (2.67)

This value can be estimated by using the Agmon-Allegretto-Piepenbrink criterion 2.5 applied for every
H̃k,k+1(N) in Zn

k,k+1, using n+ 1 tentative supersolution. The computation of this estimate for every
region will be carried on in Prop. A.1, for every k

Ẽk
n ≥ (

1
2
+n)λ ′

Nω +O(
λ
′3/2
N
N

). (2.68)

We already know how to obtain an upper bound in a generic region

Ẽk
n ≤ (

1
2
+n)λNω +O(

λ
′3/2
N
N

), (2.69)

by standard estimates for ground states energies cf. Sec. 2.3, Prop. 2.1 and Rmk. 2.3. Bounds (2.68) and
(2.69) finally imply that

Ẽn(N)− Ẽk
n ∈ −ε(

1
2
+n)ωλN +O(

λ
′3/2
N
N

), for k ∈ {0, . . . ,n}. (2.70)

To account for the difference between the energies (2.70), we define another Hamiltonian Ĥ(N) as
follow:

Ĥ(N) := H̃(N)+
n

∑
k=0

(Ẽn(N)− Ẽk
n)χZn

k,k+1
, (2.71)

where {χZn
k,k+1

}n
k=0 are characteristic functions of Zn

k,k+1, interpreted as multiplication operators. Notice
that, by definition

0 ≥−ε(n+
1
2
)λNω +O(

λ
′3/2
N
N

)≥ Ẽn(N)− Ẽk
n , (2.72)
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so that
H̃(N)≥ Ĥ(N), (2.73)

and

Ĥ(N)≥ Ẽ0(N)+
n

∑
k=0

(Ẽn(N)− Ẽk
n)χZn

k,k+1
≥ λNω

2
[(1− ε)− ε(n+

1
2
)]+O(

λ
′3/2
N
N

)> 0, (2.74)

The first inequality in Eq. (2.74) uses the estimate for the ground state energy derived in Prop. 2.6, while
the last inequality holds for N large enough and ε sufficiently small. Now, Inequality (2.73) implies [19,
XIII, Prob. 1]

Ẽn(N)≥ Ên(N), (2.75)

where Ên(N) is the nth eigenvalue for Ĥ(N).
One can now easily verify that

Ĥ(N)ψ̃n(x) = H̃(N)ψ̃n|Zn
k,k+1

(x)

+(Ẽn(N)− Ẽk
n)ψ̃n(x) =

[
Ẽk

n +(Ẽn(N)− Ẽk
n)
]
ψ̃n(x) = Ẽn(N)ψ̃n(x), x ∈ Zn

k,k+1 (2.76)

Ĥ(N)ψ̃n(xn
k) = 0, (2.77)

so that, ψ̃n is an eigenfunction of Ĥ(N) with eigenvalue Ẽn(N). Now, ψ̃n has n changes of sign, so that
by lemma 2.9, it has to be the nth eigenfunction of Ĥ(N)2. Putting together this last observation and Eq.
(2.75) with (2.68), we obtain at last

Ẽn(N)≥ (
1
2
+n)λ ′

Nω +O(
λ
′3/2
N
N

). (2.78)

Oscillators on Zd Now, we have at our disposal upper bound estimates for the asymptotic value of the
energies of a one dimensional harmonic oscillator Hharm(N), and similar estimates for the lower bound
of the energy levels of a one dimensional modified oscillator H̃(N). These results are sufficient to obtain
estimates for the d-dimensional oscillators on Zd . Indeed, the oscillators are by definition decoupled
along the different directions, e.g.

Hharm,d(N)ψ(x) =
N2

2

d

∑
i=1

1

∑
ji=−1

(ψ(x)−ψ(x1, . . .xi + ji, . . .xd))+
λ 2

N

2N2

d

∑
i=1

ω
2
i x2

i ψ(x). (2.79)

Then, it is clear that if we order as in (1.11), the elements of the sets{ d

∑
α=1

ωα(mα +
1
2
), m1, . . . ,md ∈ N

}
, (2.80)

2Note that, by (2.74), Ĥ(N) is strictly positive for N large enough. Thus, its ground state has to be strictly positive and so,
this statement is justified by an inductive argument.
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we have

limsup
N→+∞

En(N)

λN
≤ en(V harm), (2.81)

liminf
N→+∞

Ẽn(N)

λN
≥ en(V harm), (2.82)

where En(N) and Ẽn(N) are the nth energy levels of the harmonic and modified d-dimensional oscillators.

2.3 Upper bound for the energy levels of a generic potential

In this section we will estimate the asymptotic values of the low-lying eigenvalues for the Hamiltonian

H(N) =
1
2

∆N +λ
2
NVN on ℓ2(Zd), (2.83)

where VN(x) = V (x/N) and V satisfies the Assumptions 1. Profiting by the preparatory results for the
harmonic oscillator, cf. Prop. 2.1, we have an extended version for H(N).

PROPOSITION 2.15:

Let H(N) as above and γ ∈ (−1,1), then for N large enough H(N) has at least m eigenvalues,denoted by
{En(N)}m−1

n=0 , below its continuous spectrum. Moreover, the following upper bound holds true

limsup
N→+∞

En(N)

λN
≤ en(V ), (2.84)

where en(V ) has been defined in (1.11).

⋄

Proof. We proceed in a similar way as the proof of Prop. 2.1. Consider the test functions

ψi,ni(x) : =
1

C(ni)
N

d

∏
α=1

JN(xα −Nai,α)Hnα
(xα

√
λNωα(ai)

N
)e−

λN ωα (ai)(xα−Nai,α )2

2N2 , (2.85)

where the values ωα(ai) have been defined shortly before Eq. (1.11), the indices ni and {nα}d
α=1 labeling

the test function and the Hermite polynomials are such that

d

∑
α=1

ωα(ai)(nα +
1
2
) = eni(V ). (2.86)

Take N large enough to guarantee

λN > N2δ (min
i, j

∥∥ai −a j
∥∥

∞
)−2, (2.87)
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so that the test functions have disjoint supports.

⟨ψi,ni ,ψ j,n j⟩= ⟨ψi,ni ,H(N)ψ j,n j⟩= 0, i ̸= j. (2.88)

Moreover, it is also easy to verify that

lim
N→+∞

⟨ψi,ni ,ψi,mi⟩= 0, for ni ̸= mi (2.89)

lim
N→+∞

⟨ψi,ni ,
H(N)

λN
ψi,mi⟩= 0, for ni ̸= mi. (2.90)

Let us denote by Hi(N) the harmonic oscillator Hharm(N) concentrated in ai with frequencies ωα(ai), cf.
Eq. 1.11. Then, we can estimate

⟨ψi,n,H(N)ψi,n⟩= ⟨ψi,n,Hi(N)ψi,ni⟩+ ⟨ψi,ni ,H(N)−Hi(N)ψi,ni⟩ ≤ eni(V )+O(N1/2−3γ/2)

+2

⌊Nai,d+
N1+δ

λ
1/2
N

⌋

∑
xd=⌊Nai,d−N1+δ

λ
1/2
N

⌋

· · ·

⌊Nai,1+
N1+δ

λ
1/2
N

⌋

∑
x1=⌊Nai,1−N1+δ

λ
1/2
N

⌋

ψi,ni(x)
2
λ

2
N(VN(x)−V harm

N (x))

≤eni(V )+
2λ 2

N

(C(n)
N )2

⌊Nai,d+
N1+δ

λ
1/2
N

⌋

∑
xd=⌊Nai,d−N1+δ

λ
1/2
N

⌋

· · ·

⌊Nai,1+
N1+δ

λ
1/2
N

⌋

∑
x1=⌊Nai,1−N1+δ

λ
1/2
N

⌋

d

∏
α=1

e−λNωα (ai)
(xα−Nai,α )2

N2 R(
x−Nai

N
),

(2.91)

where R is the remainder in V ’s expansion. The last term is of order

λ
5/2
N
N

N1+δ

λ1/2

∑
x=0

e−λN
x2

N2
x3

N3 ≤C
λ

5/2
N

λ
3/2
N

1

λ
1/2
N

+o(λ 1/2) = O(λ 1/2). (2.92)

Then, we get the estimate

limsup
N→∞

⟨ψi,ni ,H(N)ψi,ni⟩
λN

≤ eni(V ), 1 ≤ i ≤ κ. (2.93)

Now, since the infimum of the essential spectrum satisfies inf{σess(H(N))} ≥ Cλ 2
N , for N large enough

there will be at least n discrete eigenvalues and we can use equations (2.88),(2.89),(2.90) and (2.93)
together with the Rayleigh-Riesz principle [19, Th. XIII.3] to find

limsup
N→∞

En(N)

λN
≤ en(V ), 1 ≤ i ≤ κ. (2.94)

22



2.4 Lower bound for the energy levels of a generic potential

In this section, we are interested in obtaining an optima lower bound for H(N)’s eigenvalues. It will be
necessary to employ the IMS localization formula [17] and define a refined test function. The proof is
similar in spirit to [17, Th. 3.2], with some major technical differences due to the non locality of the
Laplacian and the discreteness of the problem.

PROPOSITION 2.16: Let the potential satisfy Assumptions 1 with γ ∈ (−1,1). Then, the following lower
bound holds true

liminf
N→∞

En(N)

λN
≥ en(V ), for all n ≥ 0

⋄

Proof. We take a bump function k : R → R which is C∞, equal to one for |x| ≤ 1 and 0 for |x| ≥ 2 and
0 ≤ k(x)≤ 1 for all x ∈ R. Then we define

Ki(x) =
d

∏
α=1

Ki,α(x) :=
d

∏
α=1

k(
λ

1/2
N

Nδ
(xα/N −ai,α)), 1 ≤ i ≤ κ, (2.95)

where we take δ > 0, satisfying γ −6δ >−1 and 1 > γ +δ . The latter condition is necessary so that we
can take N large enough to satisfy at least

λN > 16N2δ (min
i, j

|ai −a j|)−2, (2.96)

so that the bumb functions all have disjoint supports centered around the minima of the potential. We
also define K2

0 := 1−∑
κ
i=1 K2

i . We can easily prove a discrete version of the IMS localization formula.
By identifying Ki with the respective multiplication operators we get

K2
i H(N)+H(N)K2

i −2KiH(N)Ki = [Ki, [Ki,H(N)]]. (2.97)

This latter formula implies

H(N) =
k

∑
i=0

KiH(N)Ki +
1
2

k

∑
i=0

[Ki, [Ki,HN ]] (2.98)

To obtain a good estimate for H(N) it is necessary to evaluate the norm of the double commutators in
(2.98). This is possible on ℓ2(Zd) because the Laplacian is a bounded operator3 Now, the bumb function
Ki is defined as the product of one dimensional functions Ki,α , and since the Laplacian is a sum of
operators acting along the different spatial directions of the lattice, we can obtain an estimate by simply
studying the one dimensional case. Thus, given an arbitrary ψ ∈ ℓ2(Z), by an explicit expansion of the
commutators we can write

[Ki,α ,H(N)]ψ(x) = [Ki,α ,
1
2

∆α,N ]ψ(x) =−N2

2 ∑
x∼y

ψ(y)(Ki,α(x)−Ki,α(y)). (2.99)

3The unbound-ness of the continuum Laplacian is recovered in the limit N → +∞ thanks to the N2 in front of the discrete
one.
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[Ki,α , [Ki,α ,H(N)]]ψ(x) =−N2

2 ∑
x∼y

ψ(y)(Ki,α(x)−Ki,α(y))2. (2.100)

Since [Ki,α , [Ki,α ,H(N)]] is self-adjoint, we can estimate its norm by evaluating

|⟨ψ, [Ki,α , [Ki,α ,H(N)]]ψ⟩| ≤ N2

2 ∑
x∈Z

[|ψ(x)ψ(x+1)|(Ki,α(x)−Ki,α(x+1))2

+ |ψ(x)ψ(x−1)|(Ki,α(x)−Ki,α(x−1))2]. (2.101)

Now, we want to estimate the difference |Ki,α(x)−Ki,α(x+1)|. The latter can be written explicitly as

|k(
λ

1/2
N

N1+δ
x−ai

λ
1/2
N

Nδ
)− k(

λ
1/2
N

N1+δ
x+

λ
1/2
N

N1+δ
−ai

λ
1/2
N

Nδ
)|.

By definition of R ∋ x → k(x) we have the following

• if x > ⌊Nai +2N1+δ/λ
1/2
N ⌋, |Ki,α(x)−Ki,α(x+1)|= 0 since k is constant.

• if Nai ≤ x < ⌊N1+δ/λ
1/2
N ⌋+Nai, |Ki,α(x)−Ki,α(x+1)|= 0 since k is constant.

• if x−⌊Nai⌋ ∈ [⌊N1+δ/λ
1/2
N ⌋, ⌊2N1+δ/λ

1/2
N ⌋],

|Ki,α(x)−Ki,α(x+1)| ≤ sup
x∈R

|k′(x)|λ 1/2
N /N1+δ ≤Cλ

1/2
N /N1+δ .

By symmetry for x → Nai − x, we can obtain the same estimates for x < Nai, for all i ∈ {1, . . . ,κ}. In
this way we get

|⟨ψ, [Ki,α , [Ki,α ,H(N)]]ψ⟩| ≤C2 λN

N2δ ∑
x∈Z

|ψ(x)|(|ψ+(x)|+ |ψ−(x)|)≤ 2C2 λN

N2δ
∥ψ∥2, (2.102)

where we have defined
ψ+(x) := ψ(x+1), ψ−(x) := ψ(x−1), (2.103)

and in the last step we have used Cauchy-Schwarz inequality. Finally we get ∥[Ki, [Ki,H(N)]]∥ ∈
O(λN/Nδ ). The same computations lead to ∥[K0, [K0,HN ]]∥ ∈ O(λN/N2δ ).

Now we are in a position to estimate En(N)/λN by looking directly at the Hamiltonian and compar-
ing it with the modified oscillator Hamiltonian

H̃i(N) :=
1
2

∆N +λ
2
NṼN(x−ai), (2.104)

with frequencies chosen as ωα ≡ ωα(ai). Moreover, the δ appearing in the definition of ṼN , cf. (2.17),
is take to be the same as the one we have inserted in Eq. (2.95). By making use of the IMS localization
formula (2.98), we write the Hamiltonian as

H(N) = K0H(N)K0 +
k

∑
i=1

KiH̃i(N)Ki +
k

∑
i=1

Ki(H(N)− H̃i(N))Ki +
k

∑
i=0

[Ki, [Ki,H(N)]] (2.105)
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For

x /∈
κ⋃

i=1

[Nai −
N1+δ

λ
1/2
N

,Nai +
N1+δ

λ
1/2
N

]

we have, that

λ
2
NVN(x)≥ min

1≤i≤κ
λ

2
NVN

(
Nai +

N1+δ

λ
1/2
N

)
=CλNN2δ +O(λ

1/2
N N3δ ), (2.106)

where the first inequality uses that VN has a local minimum at Nai, i ∈ {1, . . . ,κ}, while for the second
inequality we have Taylor expanded the potential around one of these minima. Since K0∆K0 is a positive
operator and δ > 0, it follows that for large N

K0H(N)K0 ≥ K2
0CλNN2δ ≥ λNe0(d)K2

0 (2.107)

For the second term, using the lower bound derived in Th 2.13, we simply have

KiH̃i(N)Ki ≥ K2
i

1
2

d

∑
α=1

ωα(ai)+O(
λ

3/2
N
N

)≥ K2
i e0(d)+O(

λ
3/2
N
N

). (2.108)

Now we examine the operators Ki(H(N)− H̃i(N))Ki. The support of the cut-off functions Ki is
centered around x = Nai and it is of order N1+δ/λ

1/2
N , while the modified potential ṼN differs from the

harmonic one for x ≥ ⌊N1+γ−δ ⌋. With our hypothesis on δ and γ we have

1+ γ −δ >
1
2
+δ +

γ

2
(2.109)

so that the non-harmonic part disappears in the following estimate

Ki(H(N)− H̃i(N))Ki = λ
2
NK2

i

(
VN(x)−ṼN(x−Nai)

)
= λ

2
NK2

i

(
VN(x)−

d

∑
α=1

ωα(ai)(xα −Nai)
2

2N2

)
.

(2.110)
By Taylor expanding VN around Nai, we discover that this last term is of order O(λ

1/2
N N3δ ). The double

commutants have already be estimated to be of order O(λN/N2δ ). Inserting all the due estimates in the
Eq. (2.98), we find

H(N)≥
k

∑
i=0

K2
i e0(d)λN +O(

λ
3/2
N
N

+
λN

N2δ
+λ

1/2
N N3δ ). (2.111)

To conclude, we get

liminf
N→+∞

E0(N)

λN
≥ e0(d). (2.112)

Now, we argue by induction to estimate the excited levels. We proceed as follows: suppose we have
proven that

liminf
N→+∞

En(N)

λN
≥ en(V ) (2.113)
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and suppose that en+1(V ) > en(V ) (if they were equal the estimate would be trivial since En+1(N) ≥
En(N)). Then, we take Pi to be the projection on the eigenfunctions of H̃i(N) having energy less than
en+1(V )λN +O(λ

3/2
N /N). Again, we can estimate

K0H(N)K0 ≥ K2
0CλNN2δ ≥ en+1(V )λNK2

0 . (2.114)

Then, we can bound the Hamiltonian H̃i, for arbitrary i, from below as follow

KiH̃iKi =KiPiH̃iPiKi+KiH̃i(1−Pi)Ki ≥KiPi(H̃i−Ien+1(V )λN)PiKi+en+1(V )λNK2
i +O(

λ
3/2
N
N

), (2.115)

where we have estimated KiH̃i(1 − Pi)Ki ≥ en+1(V )λNKi(1 − Pi)Ki + O(λ
3/2
N /N). Subsequently, the

whole Hamiltonian can be estimated as follow

H(N)≥ en+1(V )λNI +
k

∑
i=1

KiPi(H̃i(N)− Ien+1(V )λN)PiKi −O(
λN

N2δ
)+O(

λ
3/2
N
N

) (2.116)

Since ∑
k
i=1 KiPi(H̃i(N)− Ien+1(V )λN)PiKi : = Fn has rank at most n, we can take an arbitrary vector

ϕ ∈ Ran(Fn)
⊥, ∥ϕ∥= 1 and find

⟨ϕ,H(N)ϕ⟩ ≥ en+1(V )λN −O(
λN

N2δ
)−O(

λ
3/2
N
N

). (2.117)

However, by the min-maximum principle, the (n+1)th level En+1(N) satisfies

En+1(N) = sup
ϕ1,...ϕk

inf
ϕ∈[ϕ1,...,ϕk]⊥

⟨ϕ,H(N)ϕ⟩ ≥ inf
ϕ∈Ran(Fn)⊥

⟨ϕ,H(N)ϕ⟩. (2.118)

Then, thanks to (2.117) we conclude that

En+1(N)≥ en+1(V )λN −O(
λN

N2δ
)−O(

λ
3/2
N
N

), (2.119)

and lastly

liminf
N→∞

En+1(N)

λN
≥ en+1(V ), (2.120)

concluding the proof of the theorem.

In summary, putting together Prop. 2.15 and Prop. 2.16 we have obtained the existence of the limit

lim
N→+∞

En(N)

λN
= en(V ), (2.121)

that is, we have proved Th. 1.2.
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3 Other regions of the parameter space

In this section we briefly discuss qualitatively what happens if we take into consideration other values of
the scaling parameter γ . In particular, we can individuate five relevant regions for the latter parameter.

Continuum limit of the free discrete Laplacian γ > 1: In this limit λN decreases, when N → +∞,
as N−(γ−1). We expect that all the possible discrete eigenvalues of H(N) converge to 0, leaving only
a residual essential spectrum; that is, the correct limit of Eq. (1.14) is in some sense the continuum
Laplacian, with spectrum given by the whole [0,+∞). This is confirmed by Figure 1 below, for the
regime (+∞,1). Indeed, when the eigenvalues converge to zero, the logarithm tends to −∞. To make
this more precise, we have the following proposition.

PROPOSITION 3.1: Let H(N) satisfy Assumptions 1 with γ > 1. Assume also that the potential V in the
definition of H(N) grows for |x| →+∞ at most as e|x|

m
, m > 0. Then we have

lim
N→+∞

En(N) = 0, for all n ≥ 0. (3.1)

⋄

Proof. We will give a proof only for d = 1, the extension to all d > 1 being trivial but more lengthy. We
exploit again the Rayleigh-Ritz principle [19, Th XIII.3] to obtain an upper bound for all the eigenvalues.
We can construct a suitable basis of approximately orthonormal test function as follows: define

βN := 1+
1

m log(N)

(
log((2γ −2− ε) log(N))

)
> 1 (3.2)

for some ε > 0, 2γ −2− ε > 0, and take

g0(x) :=



2+
x

⌊NβN⌋
2⌊NβN⌋< x <−⌊NβN⌋

1 |x| ≤ ⌊NβN⌋

2− x
⌊NβN⌋

⌊NβN⌋< x < 2⌊NβN⌋

0 |x| ≥ 2⌊NβN⌋

. (3.3)

Then, we proceed to construct gn by inserting n-nodes in a symmetric fashion between (−⌊NβN⌋,⌊NβN⌋),
e.g. for n = 1

g1(x) =


1 −⌊NβN⌋< x <−⌊NβN/4⌋

− x
⌊NβN/4⌋

−⌊NβN/4⌋ ≤ x ≤ ⌊NβN/4⌋

−1 ⌊NβN/4⌋< x <−⌊NβN⌋

. (3.4)

At this point one can easily see that

lim
N→+∞

⟨ gn

∥gn∥
,

gm

∥gm∥
⟩= 0, for n ̸= m. (3.5)
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Moreover, we can estimate for the Laplacian

⟨gn,N2∆gn⟩
⟨gn,gn⟩

∈ O(N2−2βN ). (3.6)

For the potential term we have

⟨gn,λ
2
NVNgn⟩

⟨gn,gn⟩
≤C max

x∈[−2⌊NβN ⌋,2⌊NβN ⌋]∩Z

V (x/N)

N2γ−2 ≤C′ e
Nm(βN−1)

N2γ−2 . (3.7)

With our choice for βN then, we have

eNm(βN−1)

N2γ−2 = N−ε N→+∞−−−−→ 0,

N2(1−βN) = e2(1−βN) log(N) ≤C′′e− log(log(N)) N→+∞−−−−→ 0,

and these estimate are sufficient to prove that

lim
N→+∞

En(N) = 0. (3.8)

Purely continuum limit γ = 1: For γ = 1, the prefactor in front of the potential is λN = 1 and the
discrete Hamiltonian H(N) becomes the discrete approximation of the continuum Hamiltonian

H :=−1
2

∆+V. (3.9)

As we have explicitly shown for the harmonic oscillator, see Prop. 2.1,2.13, we expect that also the dis-
crete eigenvalues of a generic H(N) converge, without any rescaling, to the energies of the corresponding
continuum model. This interpretation is further supported by the observations in [6], where it is explic-
itly stated that for (1.4), “the limit δ → 0 for fixed λ > 0 corresponds to the problem of the continuum
limit, and various quantities associated with Hδ (λ ) converge to those of Hcont(λ ).” This perspective is
also consistent with earlier discussions in [5, 7]. In view of Figure 1, the convergence of eigenvalues
implies that the ratio logEharm

n (N)
logN tends to zero, confirming these observations.

Semiclassical approximation 1 > γ > −1: We have examined this region in the previous sections,
showing how the combined continuum and semiclassical limit of H(N) allows us to precisely approx-
imate the semi-classical eigenvalue asymptotics of Hcont

S (λ ), the latter encoded by the semi-classical
limit of κ harmonic oscillators in the continuum, whose frequencies are given by the square root of
the eigenvalues of the Hessians (∂xα

∂xβ
V (ai))α,β . In our second paper on this topic, we conduct a de-

tailed analysis of this interval, showing that a genuine semiclassical limit emerges, not only in terms of
eigenvalue asymptotics, but also for eigenvector asymptotics. In particular, we recover the same Agmon
estimates as those obtained by Simon in [15]. For further details, we refer the reader to the discussion
that follows.
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Purely discrete model γ = −1: A preliminary analysis shows how the behavior of the Hamiltonian
H(N) and of its eigenvalue becomes really model-dependent for γ =−1. Indeed, if for example we focus
on the simplest case of the one dimensional harmonic oscillator, we see that

(Hharm(N) f )(x) = N2
(

1
2 ∑
|x−y|=1

( f (x)− f (y))+
1
2

ω
2x2 f (x)

)
on ℓ2(Z), (3.10)

that is, the parameter N is factorized in front of everything, and the model retains it discrete nature for
every N, with the only difference being that the eigenvalues of the discrete harmonic oscillator now scale
as N2.

The break down of the continuum approximation could have been deduced also from our proofs for
the upper and lower bounds of the eigenvalues of the harmonic oscillator, see Prop. 2.1,2.6, A.1. In all
the cases, the test functions we implemented contained the exponential factor e−λNx2/N2

and the proofs
highly depended on the possibility of expanding this latter function for large N, as a mean to recover the
continuum Laplacian. However, for λN = N2, the N-dependence disappears from the argument of the
exponential and we are not able to Taylor expand our test functions. As a consequence, locality of ∆ is
lost and we are not in the continuum limit regime anymore.

Semiclassical approximation for discrete models γ <−1: It is expected that, in this parameter range,
the semiclassical limit is approached more rapidly than the continuum limit. We will analyze some
specific models, from which it will be clear that in this case the setting is similar to the one of [12],
where the eigenfunctions localize around every point of the potential.

EXAMPLE 3.2: As a first example we consider the discrete one dimensional harmonic oscillator (the
d-dimensional case behaves similarly )

Hharm(N) =
1
2

∆N +N2|γ| ω
2x2

2
on ℓ2(Z/N). (3.11)

It is easier to study the Hamiltonian Hharm(N)/N2|γ|, where the only dependence on N left is on the factor
N−2|γ| in front of the Laplacian. Clearly, if ψ f ∈ ℓ2(Z) is of finite support, then ψ f ∈ D(Hharm(N)/N|2γ|)
for all N > 1 and

Hharm(N)

N2|γ| ψ f
∥·∥−→V harm

ψ f , (3.12)

so that Hharm(N)/N2|γ| converges in the strong-resolvent sense [18, Th. VIII.25] to the multiplication
operator V harm. In particular, this implies [18, Th. VIII.24] that the eigenvalues of H(N) satisfy

lim
N→+∞

E0(N)

N2|γ| = 0,

lim
N→+∞

E2n−1

N2|γ| = lim
N→+∞

E2n

N2|γ| =
ω2n2

2
, for n ≥ 0. (3.13)

Note that the eigenvalues do not scale anymore as λN , but as λ 2
N/N2, as confirmed in [12, Sec. 2.1]. This

is clear from Figure 1, in the parameter regime (−1,−∞).
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log(Eharm
n (N))

log(N)

γ

1 −1 −∞+∞

Figure 1: Dependence on γ

⋄

EXAMPLE 3.3: Suppose that in addition to Assumptions 1 V ∈ L∞(Rd), then VN , as a multiplication
operator is bounded. Clearly, for every ψ ∈ ℓ2(Zd) one has

∥VNψ −V (0)ψ∥2 = ∑
x∈Z

|ψ(x)|2|V (
x
N
)−V (0)|2 N→+∞−−−−→ 0, (3.14)

by a simple dominated convergence argument where |V (x/N)−V (0)| ≤ 2∥V∥
∞

. Thus, H(N)/λ 2
N strongly

converges to V (0)I, and so4

lim
N→+∞

En(N)

λ 2
N

=V (0), for all n ≥ 0. (3.15)

This example shows how this setting is not exactly the same as the one of Linn, Lippner and Yau [12],
because in their work they only implemented a semiclassical parameter in front of the potential, while
the latter was kept fixed. We see that the energies are all degenerate in the limit, and scale as λ 2

N instead
of λN .

⋄

4 Discussion and future works

In this work, we have studied a suitable scaling limit of a sequence of discrete Schrödinger operators that
approximates the semi-classical limit of a continuum Schrödinger operator. Through our analysis, we
have demonstrated that the chosen scaling captures the correct asymptotic behavior in the transition from
the discrete to the continuum and semi-classical setting. This not only validates the appropriateness of

4Depending on the the potential, for fixed N there could be only a finite number of discrete eigenvalues; what we are saying
is that for N large enough, the nth eigenvalue exists and its limit is given by Eq. (3.15).
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our approach but also provides a framework for bridging discrete models with their continuous counter-
parts in the semi-classical regime. Our results lay the groundwork for further exploration of discrete-to-
continuum limits in the semiclassical regime in more intricate settings, including more complex graphs
(see below), variable potentials, and the approximation of the macroscopic limit of mean-field quantum
spin systems as a combined semiclassical and continuum limit of Schrödinger operators, an idea that has
also been foreshadowed in [21]. We conclude with the following final remarks.

REMARK 4.1:

• Instead of considering the scaled lattice X = Z/N, one may also work with a finite approximation
of Z, namely, XN = [−N1+ε ,N1+ε ]∩Z with ε > 0 arbitrarily small, with rescaled lattice XN/N.
Indeed, in this way, the length of the interval

|[−N1+ε ,N1+ε ]|/N = 2N1+ε/N N→+∞−−−−→+∞,

so that one recovers a model on the line in the continuum. If ε = 0, 2N1+ε/N N→+∞−−−−→ 2, i.e. we do
not approximate R, but rather a finite box corresponding to a particle in a box, which is a physically
different problem.

• It would be of interest to extend the analysis beyond the integer lattice Zd to more general classes
of graphs. Conducting a similar study in such broader settings could provide deeper insight into
the underlying physical phenomena and potentially unify results across discrete structures. In
particular, this direction would serve to generalize and complement the existing works on finite
graphs by [12, 20].

⋄

REMARK 4.2: (Eigenfunction localization)
We would like to draw the reader’s attention to the special case γ = 0, which has been extensively
studied in the literature: for d = 1 in [4], for general d ≥ 1 in [11], and in the framework of semiclassical
pseudodifferential operators on the torus in [7]. These works rely on suitable variants of the standard
Agmon metric to quantify upper bounds for the exponential decay of eigenfunctions. In contrast, in our
second work [9], the choice of γ ∈ (−1,1) recovers the classical Agmon metric, as introduced by Agmon
in [2]. More precisely, this choice allows us to characterize the localization of eigenfunctions in precisely
the same sense as Simon did in the continuum setting [15], thereby establishing the actual existence of
the semiclassical limit, rather than merely deriving upper bounds.

⋄

A Appendix

In this Appendix we prove the validity of the lower bound (2.68)for an arbitrary n:
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PROPOSITION A.1: Given the set of Hamiltonians {H̃k,k+1(N)}n
k=0, defined on the subgraphs Zn

k,k+1 as
in Eq. (2.62), the lower bound (2.68) holds for every k, i.e.

Ẽn
k ≥ (n+

1
2
)λ ′

Nω +O(
λ

3/2
N
N

). (I.1)

⋄

Proof. We will exploit some characteristic properties of the Hermite polynomials [1, Ch. 22] (taken with
physicists normalization) i.e.

− 1
2
(∂ 2

x Hne−
·2
2 )(x)+

1
2

x2Hn(x)e−
x2
2 = (n+

1
2
)Hn(x)e−

x2
2 (eigenvalue equation), (I.2)

(∂xHn)(x) = 2nHn−1(x), (recursion relation) (I.3)

Hn(x̄) = 0 ⇒ Hm(x̄) ̸= 0, for m ̸= n (simplicity of zeros). (I.4)

To lighten the notation we will use Θ := 1 + γ − δ , where δ > 0 was defined in (2.17) so that
γ −2δ >−1.

The estimates go as follows. We start by estimating the eigenvalue in Z0,1 = (−∞,xn
1). We use a

tentative supersolution

φ0(x) :=

|Hn(xα0
N)|e−

(α0
N x)2

2 −⌊NΘ⌋< x ≤ xn
1

|Hn(−⌊NΘ⌋α0
N)|e−

(α0
N ⌊NΘ⌋)2

2 x ≤−⌊NΘ⌋
, (I.5)

restricted to (−∞,xn
1). We have already defined the constant α0

N in 2.14. It is important to recall that,
with our choice for xn

1, Z ∋ x → Hn(xα0
N) has always the same sign in (−∞,xn

1], so that

φ0(x+1)+φ0(x−1) = |Hn((x+1)α0
N)e

− ((x+1)α0
N )2

2 |+ |Hn((x−1)α0
N)e

− ((x−1)α0
N )2

2 |

= |Hn((x+1)α0
N)e

− ((x+1)α0
N )2

2 +Hn((x−1)α0
N)e

− ((x−1)α0
N )2

2 |, (I.6)

for x ∈ Zn
0,1. To perform precise estimates we need to subdivide the study of Z0,1 in more subregions

x <−⌊NΘ⌋, x =−⌊NΘ⌋, −⌊NΘ⌋< x ≤− Nθ√
λ ′

N
, − Nθ√

λ ′
N
< x < xn

1 −1, x = xn
1 −1, (I.7)

where θ > 0 will be specified later.
For x <−⌊NΘ⌋, φ0 is constant, so that

H̃0,1(N)φ0(x) =
λ 2

Nω2x4

2N2 φ0(x)≥
N2+2γ−4δ ω2

2
≥ φ0(x)λ ′

Nω(n+
1
2
), (I.8)

For x =−⌊NΘ⌋ we have

H̃0,1(N)φ0(−⌊NΘ⌋) = φ0(−⌊NΘ⌋)
{

N2[1− 1
2
(1+

φ0(−⌊NΘ⌋+1)
φ0(−⌊NΘ⌋)

)]+
λ 2

N⌊NΘ⌋4ω2

2N2

}
, (I.9)
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where we have factorized a factor of φ0(−⌊NΘ⌋). Since Z ∋ x → |Hn(xα0
N)| is a polynomial of order n,

which is strictly decreasing for x < xn
1 ∈ O(

√
N/λN), and since

−⌊NΘ⌋α
0
N

N→+∞−−−−→−∞, ⌊NΘ⌋(α0
N)

2 N→+∞−−−−→ 0, (I.10)

the Hermite functions satisfy

A1⌊NΘ⌋n ≤ |Hn(−⌊NΘ
α

0
N⌋)| ≤ A2⌊NΘ⌋n, (I.11)

for some positive constants A1,A2. Thus, we have

φ0(−⌊NΘ⌋)
φ0(−⌊NΘ⌋+1)

=e−
(α0

N ⌊NΘ⌋)2

2 e
(α0

N ⌊NΘ+1⌋)2

2
|Hn(−⌊NΘ⌋α0

N)|
|Hn(−⌊NΘ +1⌋α0

N)
|

≤Ce−(α0
N)

2⌊NΘ⌋ |(⌊NΘ⌋)n|
|(⌊NΘ +1⌋)n|

∈ O(N0), (I.12)

so that Eq. (I.9) can be estimated as

H̃0,1(N)φ0(−⌊NΘ⌋)≥ φ0(−⌊NΘ⌋)
(

λ ′2
N ⌊NΘ⌋4ω2

2N2 −CN2
)
≥ φ0(−⌊NΘ⌋)λ ′

N(n+
1
2
) (I.13)

The last inequality is a consequence of

1
λ ′

N

(
λ ′2

N ⌊NΘ⌋4ω2

2N2 −CN2
)
≥C′N3+3γ−4δ N→+∞−−−−→+∞. (I.14)

Now, we analyze the region −⌊NΘ⌋< x < xn
1 −1. We recall that φ0 is strictly positive and can be seen as

the discretization of a smooth function on R. We define for comodity

φ0(x) =: φ̃0(xα
0
N). (I.15)

Then, we have

H̃0,1φ0(x) = N2[φ̃0(xα
0
N)−

1
2
(φ̃0(xα

0
N −α

0
N)+ φ̃0(xα

0
N +α

0
N))]+ φ̃0(xα

0
N)

λ 2
Nω2x2

2N2 . (I.16)

Now, we use an exact Taylor expansion with remainder [14, Th. 1.4.1] to write

φ̃0(xα
0
N)−

1
2
(φ̃0(xα

0
N −α

0
N)+ φ̃0(xα

0
N +α

0
N)) =−1

2
φ̃
(2)
0 (xα

0
N)(α

0
N)

2 −
(α0

N)
4

6

∫ 1

0
dt t3

φ̃
(4)
0 (xα

0
N + tα0

N),

(I.17)
where the superscripts (2) and (4) denote the order of derivation of x → φ̃0(x). Note that, with some
abuse of notation, we are regarding φ̃0 as a function of R. Then, using the eigenvalue equation I.2 for

φ̃0(x) = Hn(x)e−
x2
2 , (I.18)
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we have

− N2

2
(xα

0
N)

2
φ̃
(2)
0 (xα

0
N) =−(Nα

0
N)

2 (xα0
N)

2

2
φ̃0(xα

0
N)+(Nα

0
N)

2(n+
1
2
)φ̃0(xα

0
N)

= [−λ ′2
N ω2x2

2N2 +λ
′
N(n+

1
2
)]φ̃0(xαN). (I.19)

Moreover, since −⌊NΘ⌋ < x < x1 ∈ O(α0
N), the dominant piece in φ̃

(4)
0 is given by the term where all

four derivatives are applied to the exponential e−
x2
2 , so that we can estimate

sup
t∈(0,1)

|φ̃ (4)
0 (xα

0
N + tα0

N)| ≤ A3(xα
0
N)

n+4e−
(xα0

N )2

2 (I.20)

for some positive constant A3. Now, we want to estimate the absolute value of the nth hermite function
|Hn|, at points xα0

N .
We consider the region −⌊NΘ⌋< x ≤−Nθ/

√
λ ′

N , for some constant θ > 0, such that

−θ
N√
λ

<−xn
1. (I.21)

Then, we have
|Hn(xα

0
N)| ≥ A4(xα

0
N)

n, (I.22)

for some positive constant A4, and if we plug estimates (I.20), (I.21) back to the supersolution equation

H̃0,1φ0(x) =N2[φ̃0(xα
0
N)−

1
2
(φ̃0(xα

0
N −α

0
N)+ φ̃0(xα

0
N +α

0
N))]+ φ̃0(xα

0
N)

λ 2
Nω2x2

2N2

=φ̃
N
0 (xα

0
N)[λ

′
N(n+

1
2
)+(λ 2

N −λ
′2
N )ω2 x2

2N2 −
N2(α0

N)
4

6

∫ 1

0
dt t3 φ̃

(4)
0 (xα0

N + tα0
N)

φ̃0(xα0
N)

]

≥φ̃
N
0 (xαN)[λ

′
N(n+

1
2
)+(λ 2

N −λ
′2
N )ω2 x2

2N2 −A5N2
α

8
Nx4]. (I.23)

The last two addenda in (I.23) satisfy

(λ 2
N −λ

′2
N )ω2 x2

2N2 −A5N2
α

8
Nx4 = (λ 2

N −λ
′2
N )ω2 x2

2N2 −A5ω
4 λ ′4

N x4

N6 ≥ 0 (I.24)

for N large enough and |x|< ⌊NΘ⌋. We conclude that for −⌊NΘ⌋< x ≤−θN/
√

λ ′
N

H̃0,1φ0(x)≥ λ
′
N(n+

1
2
)φ0(x). (I.25)

Now, we focus on −θN/
√

λ ′
N < x < xn

1 − 1. Since Z ∋ x → |Hn|(xα0
N) is strictly decreasing, we can

estimate |Hn|(xα0
N) with its value at xn

1. Recall that Hn(x̄n
1α0

N) = 0 , so that we have

|Hn((xn
1−1)α0

N)|= |Hn(x̄n
1α

0
N)+H(1)

n (x̄n
1α

0
N)α

0
N(x̄

n
1+1−xn

1)+O((α0
N)

2)| ≥A6(1−{|x̄n
1|})α0

N |H
(1)
n (x̄n

1α
0
N)|,

(I.26)
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for some constant A6 > 0. Now, thanks to the recursion relation (I.3), it holds |H(1)
n (x̄n

1α0
N)|= 2n|Hn−1(x̄n

1α0
N)|.

Using property (I.4), we know that every one of the zeros of x → Hn−1(xα0
N) satisfies

|xn−1
k − xn

1|α0
N > B > 0, (I.27)

for some N-independent constant B. As above, we can estimate

A6|(1−{|x̄n
1|})Hn−1(x̄1α

0
N)| ≥ A7(α

0
N)

nx̄n−1
1 = A8α

0
N . (I.28)

Moreover,

sup
t∈(0,1)

φ̃
(4)
0 (xα

0
N + tα0

N) ∈ O(N0), for x ∈
(
−θ

N√
λ ′

N
, xn

1 −1
)
. (I.29)

Thus, in the interval −θN/
√

λ ′
N < x < xn

1 −1, we estimate

H̃0,1φ0(x) =N2[φ̃0(xα
0
N)−

1
2
(φ̃0(xα

0
N −α

0
N)+ φ̃0(xα

0
N +α

0
N))]+ φ̃0(xα

0
N)

λ 2
Nω2x2

2N2

=φ̃
N
0 (xα

0
N)[λ

′
N(n+

1
2
)+(λ 2

N −λ
′2
N )ω2 x2

2N2 −
N2(α0

N)
4

6

∫ 1

0
dt t3 φ̃

(4)
0 (xα0

N + tα0
N)

φ̃0(xα0
N)

]

≥φ̃
N
0 (xαN)[λ

′
N(n+

1
2
)+(λ 2

N −λ
′2
N )ω2 x2

2N2 −A8N2(α0
N)

3]. (I.30)

Since N2(α0
N)

3 = ω3/2λ
3/2
N /N, we conclude that

H̃0,1(N)φ0(x)≥ φ0(x)
(

λ
′
Nω(n+

1
2
)+O(

λ
′3/2
N
N

)
)
. (I.31)

It remains to evaluate the equation for x = xn
1 −1. At this point, we have

H̃0,1φ0(xn
1 −1) = N2[φ̃0((xn

1 −1)α0
N)−

1
2
(φ̃0((xn

1 −1)α0
N −α

0
N))]+ φ̃0((xn

1 −1)α0
N)

λ 2
Nω2x2

2N2 . (I.32)

Now, we know by definition that φ0(xn
1)≥ 0, so that we have the lower bound

N2[φ̃0((xn
1 −1)α0

N)−
1
2
(φ̃0((xn

1 −1)α0
N −α

0
N))]

≥ N2[φ̃0((xn
1 −1)α0

N)−
1
2
(φ̃0((xn

1 −1)α0
N −α

0
N)+ φ̃0((xn

1 −1)α0
N +α

0
N))], (I.33)

and we can proceed to estimate the supersolution equation as in the interval (−θN/
√

λ ′
N ,x

n
1 − 1), ob-

taining

H̃0,1φ0(xn
1 −1)≥ φ0(xn

1 −1)(λ ′
Nω(n+

1
2
)+O(λ

′3/2
N /N)) (I.34)

We have concluded the estimate on Zn
0,1. We proceed now with the adjacent region Zn

1,2. We consider
the tentative super solution obtained by restricting to Zn

1,2 the following

φ1(x) := φ̃1(xα
1
N) := |Hn(xα

1
N)|e

− λ ′N ωx2

2N2 , (I.35)
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where

α
1
N :=

x̄n
1

xn
1

√
ωλ ′

N

N
= (1−

{x̄n
1}

xn
1

)

√
ωλ ′

N

N
=

√
ωλ ′

N

N
+O(

λ ′
N

N2 ). (I.36)

For the following, we recall that both xn
1 and xn

2 are of order O(
√

λ ′
N/N) and that with our choice of xn

2,
Hn(xn

2α1
N) and Hn((xn

2 −1)α1
N) have the same sign.

We begin with the supersolution equation at xn
1 +1

H̃1,2(N)φ1(xn
1 +1) = N2[φ̃1((xn

1 +1)α1
N)−

1
2

φ̃1((xn
1 +2)α1

N)]+
λ 2

Nω2(xn
1 +1)2

2N2 φ̃1((xn
1 +1)α1

N). (I.37)

With our choice of α1
N , we have

φ̃1(xn
1α

1
N) = 0, (I.38)

so that one can rewrite Eq. (I.37) as

H̃1,2(N)φ1(xn
1 +1) = N2[φ̃1((xn

1 +1)α1
N)−

1
2
(φ̃1((xn

1 +2)α1
N)+ φ̃1(xn

1α
1
N))]+

λ 2
Nω2(xn

1 +1)2

2N2 φ̃1(xα
1
N).

(I.39)

Using a Taylor expansion with remainder and the eigenvalue equation (I.2) for φ̃1, we rewrite Eq. (I.39)
as

H̃1,2(N)φ1(xn
1 +1) = φ̃1((xn

1 +1)αn
1 )
[
(Nα

1
N)

2(n+
1
2
)

+(λ 2
Nω

2 − (α1
N)

2)
(xn

1 +1)2

2N2 − N2(α1
N)

4

6

∫ 1

0
dt t3 φ̃

(4)
1 ((xn

1 +1)α1
N + tα1

N)

φ̃1((xn
1 +1)αn

1 )

]
. (I.40)

Now, we estimate the different pieces:

(Nα
n
1 )

2(n+
1
2
) =

( x̄n
1

xn
1

)2
λ
′
N(n+

1
2
)ω = ωλ

′
N(n+

1
2
)+O(

λ
′3/2
N
N

), (I.41)

(λ 2
N − 1

ω2 (α
1
N)

2)
ω2(xn

1 +1)2

2N2 ≥−B1λ
′
N(
( x̄n

1
xn

1
−1

)2
) ∈ O(

λ
′3/2
N
N

) (I.42)

− N2(α1
N)

4

6

∫ 1

0
dt t3 φ̃

(4)
1 ((xn

1 +1)α1
N + tα1

N)

φ̃1((xn
1 +1)αn

1 )
≥−B2

λ
′3/2
N
N

, (I.43)

for some positive constat B1,B2 > 0. Note that in (I.43) we have used that φ̃
(4)
1 ((xn

1 + 1)α1
N + tα1

N) ∈
O(N0), while φ̃1((xn

1+1)αn
1 )≥B3

√
λ ′

N/N, for some constant B3. Using the three estimate (I.41),(I.42),(I.43)
in Eq. (I.40) we have

H̃1,2(N)φ1(xn
1 +1)≥ φ1(xn

1 +1)(λ ′
Nω(n+

1
2
)−O(

λ
′3/2
N
N

)). (I.44)
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For the region in the interior of Zn
1,2, xn

1 < x < xn
2 −1, one has

H̃1,2(N)φ1(x) =N2[φ̃1(xα
1
N)−

1
2
(φ̃1(xα

1
N +α

1
N)+ φ̃1(xα

1
N −α

1
N))]+

λ 2
Nω2x2

2N2 φ̃1(xα
1
N)

=φ̃1(xα
n
1 )
[
(Nα

1
N)

2(n+
1
2
)+(λ 2

Nω
2 − (α1

N)
2)

x2

2N2 −
N2(α1

N)
4

6

∫ 1

0
dt t3 φ̃

(4)
1 (xα1

N + tα1
N)

φ̃1(xαn
1 )

]
.

(I.45)

and since x ∈ O(N/
√

λ ′
N), the estimate follows as before by looking at the different terms in (I.45). For

the rightmost point of the inerval, xn
2 −1, we have made sure that φ1(x2)≥ 0, so that we have

H̃1,2(N)φ1(xn
2 −1) =N2[φ̃1((xn

2 −1)α1
N)−

1
2

φ̃1((xn
2 −2)α1

N)]+
λ 2

Nω2(xn
2 −1)2

2N2 φ̃1((xn
2 −1)α1

N)

≥N2[φ̃1((xn
2 −1)α1

N)−
1
2
(φ̃1((xn

2 −2)α1
N)+ φ̃1(xn

2α
1
N))]+

λ 2
Nω2(xn

2 −1)2

2N2 φ̃1((xn
2 −1)α1

N),

(I.46)

and again, by Taylor expanding and using the eigenvalue equation , we can estimate (I.46) as

H̃1,2(N)φ1(xn
2 −1)≥ φ1(xn

2 −1)(λ ′
Nω(n+

1
2
)+O(

λ
′3/2
N
N

)), (I.47)

concluding the proof in Zn
1,2.

For the subsequent step, we define the supersolution

φ2(x) := φ̃2(xα
N
2 ) := |Hn(xα

2
N)|e

− α2
N x2

2N2 , (I.48)

restricted to Z2,3. Again, we will have

φ2(xn
2) = 0, φ2(xn

3)> 0. (I.49)

Moreover, if x ∈ Zn
2,3, then it is of order O(N/

√
λ ′

N) and

α
N
2 = ω

√
λ ′

N

N
(1+O(

√
λ ′

N

N
)), (I.50)

so that all the estimates we made for Zn
1,2 can be repeated without any change. We proceed by induction

on k, for extimating the eigenvalue on Zn
k,k+1, k< n. Once we have arive at k= n, we use the supersolution

obtained by restricting to Zn
n,n+1

φn(x) := φ̃n(xα
n
N) :=

|Hn(xαn
N)|e

− αn
N x2

2N2 xn
n < x < ⌊NΘ⌋

|Hn(⌊NΘ⌋αn
N)|e

− αn
N ⌊NΘ⌋2

2N2 x ≥ ⌊NΘ⌋
, (I.51)
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This time, φn(xn
n) = 0. Then, we have for x = xn

n +1,

H̃n,n+1(N)φn(xn
n +1) =N2[φn(xn

n +1)− 1
2

φn(xn
n +2)]+φn(xn

n +1)
λ 2

Nω2x2

2N2

=N2[φn(xn
n +1)− 1

2
(φn(xn

n +2)+φn(xn
n))]+φn(xn

n +1)
λ 2

Nω2x2

2N2 . (I.52)

After expanding around the Laplacian term around xn
n +1 and making use of the previous arguments for

estimating the remainder and the potential term, one arrive at

H̃n,n+1(N)φn(xn
n +1)≥ φn(xn

n +1)(λ ′
Nω(n+

1
2
)+O(

λ
′3/2
N
N

)). (I.53)

By symmetry, the lower bound in the intervals xn
1 + 1 < x < θN/

√
λ ′

N , θN/
√

λ ′
N ≤ x < ⌊NΘ⌋ and

⌊NΘ⌋ ≤ x carry on exactly the same as those we did for φ0. This finally concludes the proof: we have
obtained that

Ẽk
n ≥ Ẽ(N)≥ λ

′
Nω(n+

1
2
)+O(

λ
′3/2
N
N

), k ∈ {0, . . . ,n}. (I.54)
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