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Abstract

The aim of this paper is two-fold. First, we prove the existence of Lieb-
Robinson bounds for classical particle systems describing harmonic
oscillators interacting with arbitrarily many neighbors, both on lattices
and on more general structures. Second, we prove the existence of a
global dynamical system on the commutative resolvent algebra, a C*-
algebra of bounded continuous functions on an infinite dimensional
vector space, which serves as the classical analog of the Buchholz—
Grundling resolvent algebra.
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1 Introduction

Lieb-Robinson bounds provide a fundamental insight into the effective local-
ity of interactions in quantum and classical many-body systems. Originally
established by Lieb and Robinson in the context of quantum spin systems
[5], these bounds quantify the maximal speed at which information and
correlations can propagate through a lattice of interacting particles. De-
spite the inherently non-relativistic nature of such systems, Lieb-Robinson
bounds imply the existence of an emergent light-cone-like structure, limiting
the influence of local perturbations to a finite velocity, commonly referred
to as the Lieb-Robinson velocity.

The significance of these bounds extends beyond their conceptual appeal,
playing a crucial role in rigorous studies of the dynamics of infinite quantum
systems, the stability of topological phases, and the derivation of properties
such as exponential clustering of correlations and the existence of thermo-
dynamic limits [12, 4, 11, 10]. More recently, Lieb-Robinson bounds have
also been formulated and applied in the analysis of quantum lattice systems
with infinite degrees of freedom [3], 9] [13], broadening their applicability; in
particular, in the context of resolvent algebras [3].

Analogous bounds also hold in classical many-body systems, where, de-
spite the absence of non-commutativity and unitary evolution, effective lo-
cality emerges under suitable conditions. For example, in Hamiltonian lat-
tice systems with finite-range or rapidly decaying interactions, it is possible
to rigorously derive finite propagation speed estimates for perturbations,
closely paralleling the quantum setting. Such classical Lieb-Robinson-type
bounds have been proven for systems of coupled anharmonic oscillators and
classical spins [6 [7], offering insight into the finite-speed propagation and
supporting kinetic descriptions in the thermodynamic limit.

A particularly important class of models where these ideas apply is given by
(an)harmonic lattice Hamiltonians. Here, each lattice site hosts a particle
with a continuous degree of freedom, confined in a potential and coupled
to its neighbors through linear or nonlinear forces. Such models serve as
paradigms for the study of macroscopic non-equilibrium phenomena, such
as heat conduction, emerging from many-body Hamiltonian dynamics [T}, 9].

In line with these considerations, this work addresses a broad class of
infinite classical particle systems characterized by general interactions and
heterogeneous lattice structures. More precisely, we consider I' to be a
countable index set, which can be interpreted, for example, as a lattice
embedded in R¢. Around each site k € T, a particle is confined by a harmonic
potential, while particles at different sites interact via pairwise attractive
and/or repulsive forces. Denoting by gi the displacement of the particle
at site k from its reference position, and by pg its momentum, the formal



Hamiltonian governing the system is given by
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where the mass parameters my > 0, the harmonic force constants v > 0,
and the interaction potentials V; vary with site indices and satisfy appro-
priate smoothness and summability conditions (see Section |2 for precise
definitions).

Unlike many traditional studies which assume uniform masses and force
constants and impose periodic lattice structures, our framework allows for
fully inhomogeneous parameters {myg, v} and considers arbitrary countable
sets I" without reliance on any underlying geometric regularity. The ther-
modynamic limit is formulated purely via the natural partial order on finite
subsets of I' under inclusion. This generality enables our results to apply to
a broad spectrum of solid-state material configurations, including but not
limited to perfect crystals, amorphous solids such as glass, doped metals
with irregular impurities, and novel nanostructures.

To analyze locality and propagation properties within this general frame-
work, Section [3| establishes a Lieb-Robinson-type bound for classical dy-
namics. Specifically, for any finite sublattice A € I of a fixed discrete set I'
and any pair of bounded, smooth observables f and ¢ supported on disjoint
subsets X,Y C A, we show in Theorem [§|that the time evolution under the
classical Hamiltonian flow satisfies the estimate

[{ah(h):9}|_ < Blflcrllgler DX, Y) (e = 1), (2)

where oy denotes the pullback by the Hamiltonian flow on A, {,-} is the
Poisson bracket, || - [|o1 is the Cl-norm, and A, B > 0 are constants inde-
pendent of f, g, and A. Here,

D(X,Y) =) > F(d(zy))
zeX yeY
with F : [0, 00) — (0, 00) a suitable function, cf. Section[2.3|for details. Note
that these bounds resemble a classical analog of the usual Lieb-Robinson
bounds known in quantum mechanics [9, 10} [1T], [12].

Building on this, Theorem |10] constitutes our second key result: within
the framework of the commutative resolvent algebra introduced in [14] - a
classical analog of Buccholz-Grundling resolvent algebra [2] - we leverage
the Lieb-Robinson bound established in Theorem [§ to construct a global
C*-dynamical system describing the time evolution of observables in the
infinite-volume limit.

This construction highlights the power of our algebraic approach: by
capturing finite propagation speeds even in classical systems with potentially



non-integrable interactions, it provides a robust foundation for analyzing
locality and dynamics in highly general classical settings. Moreover, it opens
the door to extending these methods to quantum systems with equally broad
and physically realistic interaction structures.

2 Mathematical setting

We introduce our conventions and assumptions regarding the classical oscil-
lating and interacting (in)finite particle systems under consideration. Fix-
ing some notation, for F' : V. — W a differentiable map between finite-
dimensional real inner product spaces, we write DF'(v) for the total deriva-
tive of F' at v, meaning that

_|[F(v+h) - F(v) — DF(v)(h)]

e Tl

=0.

We write L(V, W) for the set of all linear maps between V and W. For
all linear functionals ¢ € L(V,R), we write ¢’ for the element of V' that
satisfies p(v) = ¢! - v for all v € V. We also write V f for the gradient of a
function f:V — R, so that Vf(v) = Df(v)T.

2.1 The phase space

We consider an arbitrary countable set I' — typically interpreted as a discrete
subset of Rf, namely, as the set of points of confinement around which the
particles are pinned by a Harmonic potential. However only the set structure
of I' is used, which already endows the set of finite subsets of I' with a
partial order — inclusion — which is upward directed and hence defines a
thermodynamic limit. Assumptions on the material topology and geometry
will be encoded not in I" but in our assumptions on the interaction potentials,
to be discussed in § 2.2

To each element of I we associate a phase space R??, and our total phase
space is given by

Q = (T, R*) = ¢,(T",RY) x £.(T',RY)

consisting of pairs w = (p,q) € Q of finite sequences p = (p)ier, ¢ = (q1)ier
for which each entry takes values in R?. The components of p; (resp. )
in R? are denoted p;; (resp. ;) for i = 1,...,d. By construction Q is
a countably infinite dimensional vector space which admits a natural inner
product induced by the inclusion Q C ¢2(I", R??) into the square-summable
sequences.

Let A € I be any finite subset labeling the particles of a subsystem. We
define, for each finite subset A € I,

Qp ={(p,q) €Q: pp=qg=0forl ¢ A} = R2IAl,



We occasionally adopt the notation

QR ={(p,0) € 2} = RN
Q" ={(0.9) € 2} =R,

and we note that Qy = Q™ @ QR We furthermore emphasize that

Q= .
Ael’

2.2 Local Hamiltonians

For each finite A € I" we consider the local Hamiltonian

Ha(pog) =Y (HpkH? . zxk||QkH2> + 1 S Vialar — @), (3)

keA 2my 2 2 kleA

for (p,q) € Q. Here, | - || is the Euclidean norm on R¢, and m; > 0 and
v > 0 denote the mass and force constant of particle k, and Vj; denotes
the interaction potential between particles k£ and [, subject to conditions
below. We note that H(p,q) depends solely on (pa,qpa) = ma(p,q) € Qa,
and hence we may view H, as a function acting on the finite-dimensional
phase space £25. Observe furthermore that the model defined by can
be interpreted as a generalization of an oscillating and interacting lattice
System.
For a multi-index §: {1,--- ,r} = Z>¢ with || = >i_; 5(7), we write

o7 PV 9o,

where 85 @ = 80) /83:26 @ are the usual partial derivatives of order [3(i)
corresponding to the it" coordinate of RY.

ASSUMPTION 1: The following conditions are assumed:
(i) Vi(z) = Vig(=z), Vik(z) =0;
(i) Vi € C°(R%, R) for each k,l € T;
(iii) there exists a constant Cyy > 0 and Cy; > 0 for each k,l € I such that
107Villeo < CuCy
for all 5 : {1,...,7} = Z>o;

(iv) 0 < infkel“{m%c} < SqueF{m%c} < 00, and 0 < infrer{v;} < suppcr{v} <
0.



It is not difficult to see that the Hamiltonian vector field is globally
Lipschitz on Qy [15, Sec. 2.5]. Therefore, by the Picard Lindeldf theorem
the Hamiltonian equations admit a unique globally defined solution for every
initial condition in 4. In particular, this guarantees the existence of a
continuous Hamiltonian flow

P, : QA—>QA,

which is a homeomorphism for each ¢ € R. We furthermore introduce the
following notation:

e (p,q) — arbitrary point in .

e pj,qj — position and momentum component at site j € A of the
arbitrary point (p,q) € Q4.

o p(t),q(t) — the functions that take as an input an initial value (say
(p,q)), and output the value of the position/momentum at time ¢ (so
®4(p, q). In other words: p(t) = Tmom © ®; and q(t) = Tpos © Ds.

« Q) P(t) = Q(t) = q(t)(P(0),Q(0)) and P(t) = p(t)(F(0),Q(0)) for
some fixed choice of P(0),Q(0) € Qy.
2.3 Conditions on I'

Let T' be a countable metric space equipped with a metric d. We restrict
the geometry of I' by assuming the existence of a function

F:[0,00) = (0, 00),
with the following properties (see e.g. [9, [10]):
ASSUMPTION 2: We assume:

1. Monotonicity: F' is non-increasing in its argument, i.e.,
F(z) < F(y) forally <z,
and normalized such that

F(0) = 1.

2. Uniform integrability: For every fixed y € I', the sum over all x € I" of
F(d(x,y)) is finite:
> F(d(z,y)) < oo,

zel

and

|F|| := sup Z F(d(z,y)) < oc.
Y€l yer
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3. Convolution property: There exists a constant Cr > 0 such that for
all z,y €T,

> F(d(z,2))F(d(z,y)) < CpF(d(z,y)).

zel’

Consider the potential function ¥ defined on two point sets Z = {k, [}
by U(Z) := Vi : R = R. Tt follows that

Hy=> H}+ > ¥(2),
keA ZCA
|Z]|=2

where ) )
I e
ka 2 ’

Hy

Finally, we assume the following compatibility condition between the grid I"
and the interaction part of the Hamiltonian:

AssuUMPTION 3: The following constant is finite:

[T := su _ G < 0
T er Fld(k, D)
where the Cy,; are the constants from Assumption (iii). In particular, for all
k,lel
Cr < |||[F(d(k,1)).

3 Lieb-Robinson bounds

3.1 Estimates on time-evolved Poisson bracket

Building on the methods developed in [6], we generalize them to our frame-
work. Let X,Y C A be finite subsets, and fo € C}(Qx) and go € CL(Qy).
In order to compare fy and g, in accordance with the structure of the com-
mutative resolvent algebra (see Section we define mx A : 2y — Qx and
TyA : A — Qy to be the orthogonal projection from {24 onto {2y and Qy,
respectively (recall that all these spaces are finite-dimensional). We then
write f := foomx p and g := go o my,p. Their C'-norms are defined as:

[fller = [[flloo + IV fll2.00,  llgller = llglloc + 1Vgll2.00,

the notation [|Vf[l200 stands for sup(, gco, IVF(p:@)ll2 with [| - [[2 the

standard Euclidean norm on Q, induced by ¢2(I',R??), and similarly for
|Vgll2,00- In other words, we have for (p,q) € Q) that

d
Ip. 2= [> w2+ gl = | D2 D p3 + i

jea jeAi=1



For fixed lattice points j € A with (p;,q;) € R??, we simply write

I(pj> )l =

without explicitly indicating the subscript 2. The Poisson bracket of the
time-evolved observable ay(f) := f o ®; with g is given by

(os(f), g} = ZZ ((%zt dg ﬁat(f) dg ) ‘

jEA i=1 945 Opji Opji 04,

We will bound this quantity by bounding on the one hand the derivatives
of f and g, and on the other hand the dependence of the time evolution on
the initial conditions. To aid with notation, for all £ € A let us define the
projections

Toos(Dsq) = q € QR =R 71 (p.q) ==qi € oy = RY

mom ~v Rd

Qxlom = R‘AM 7Tmom,k(p’ q) =Dpr € Q{k}

7Tmom(py q) =pc
where (p,q) € QR ® QR = Qx. We will write 775, : Q1 — Q4 ete.
for the conjugate maps, i.e. the associated inclusion. We then define for
all functions h € C}(Qp, V) (where V is a finite dimensional inner product
space) the generalized partial derivatives

oh "

%(p, q) := Dh(p,q) o mhos : QX" =V
8h mom
879(19, q) == Dh(p,q) o Thyom : Q4" =V

and also for all k£ € A the site-specific derivatives

oh " os
87%(]9’ Q) = Dh(pv Q) © 7Tpos,k : Q%{)k} -V

(9h * mom
87pk(p’ Q) = Dh(pv Q) © Tmom,k - Q{k} -V

We note that if V' = R then
oh T T
Kq(p’ ‘I) = 7rp08(Dh(pa Q)) = 7rpoth(p» Q)

and similarly for 2 (p, q), aa—q}Z(p, q), and (%C(p, q) for all k € A. We can then
succinctly write

(ou(,0) = (D) (B0)7_ (PelD)" (00)F
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where the inner product and transpose are taken pointwise.
Since a¢(f) = f o ®;, we have

D(ai(f))(p,a) = D(f)(®e(p, q)) o DP+(p,q)
= g;(¢t(pa Q)) O Tpos © D(I)t(p, Q)
of

+ aip(q)t(pv Q)) O Tmom © D‘I)t(p, Q)

This leads us to define the functions

mapping the initial conditions to various quantities after a time evolution
by time t. Since projections are linear, we calculate

%(t)
dq

dq(t "
g(p) Q) ‘= Tpos © D(I)t(p7 Q) © Tmom

(p’ q) = Tpos © Dq)t(pv Q) 0 ﬂ—;os

and similarly for ( )(p, q) and ( )( p,q). We therefore see that

&géf) (p,q) = gf;(@t(p, q)) o 8225)(17, q) + g]];(@t(p, q)) o 81(;5;)(19, q)
day(f) of dq(t) of op(t)

op (p,q) = aq(<I>t( p,q))° ap( )+8fp(‘1>t( ))OTP(P,Q)

Summarizing and using the fact that (¢ o A)T - v = ¢’ - Av for a linear
functional ¢ : W — R and linear map A : V — W, we obtain

{0u(f), g} (o) = (3;“<¢t<p,q>>)T U9 w0) (v 7q>)T

(L) 2000 (L)
- (Zauw q>>)T 200 (St q>)T

(o) %50 (Gwn)

SO

Recall that f only depends on the grid sites in X and ¢ on the grid sites in
Y, by which we mean that f = foomx s and g = goomy,a. This means that



%:gg =0forjeA\X, aswellas@: 89 =0forje A\Y. We
J
therefore see that

T ‘ T
{a(f), 9} (P, q) ZZ( (®:(p. q )) '%Zf)(p,Q)(;}ic(p,q))

jexX hey
+ (ggj(@t(p, Q))>T‘ 8225) (p,q) <§;€(1), Q)>T
(o e >>)T- W0 ) (2 .0))
(g;{] (@4 (p, q))>T : m;;f)(p, q) ((gjk(p, Q)>T

Because (8f( ,q))T corresponds to projecting V f(p,q) onto Q?O},
have that || q]-( Q)2 < ||IVf(p,q)|2 for all j € A. Using that for all (p,q) €

Qp we have [[Vf(Qi(p,q))ll2 < IVfll2,0 and [[Vg(p,@)ll2 < [[Vgll2,00 We
then estimate

{ou(), e
0q;(t) ‘8pj(t) Haqj t) Hapa (1)
< 04,1
_\f\lmllgllcl];((‘ vl MR el I v IR e I
key
ou,(t )| 0w om0
<4 ) S i "J 7‘3 ”J ,
< alflle ’g”“g»g{H v IR v L v R o TR
(S

where for a function F' : Qy — L(V,W) with values in the set of linear
operators between two vector spaces V and W we write

||FH0p,oo = sup |[[F(p, Q)”op
(P,9)€QA

REMARK 1: Note that whenever X and Y are disjoint, their are no diagonal
terms. This will play a role in the next section.

Variational methods

Now that we have separated the dependence on the functions f and g, we
focus on bounding the derivatives of the time evolution with respect to
the initial data. In order to clean up notation, we pick an orbit of the
time evolution (P(t),Q(t)) := ®+(P(0),Q(0)) for some fixed initial point
(P(0),Q(0)) € Qp (we write uppercase letters to distinguish for example
Q(t), which for all ¢t € R is a vector in QY”, from ¢(t), which for all ¢t € R
is a function Q) — QR describing how the position at time ¢ depends on

10



the initial value; in other words, Q(t) = ¢(t)(P(0),RQ(0))). We write the
following for the four Jacobian matrices

X0 := 2P0, QO Z1y0) = 9 (P(0), QO
viy ) = 22D poy 00 Wiy = 229 (p(0), Q0)):

apj

where we remind the reader that for each k,j € A these are each a d x d
matrix.
Recall the Hamiltonian of the system:

2 1
Ha(pa) = Y. ('m n ;qun?) £33 Vialae — )

keA kleA

where the potentials Vj; satisfy Assumption[l] The evolution ®;(p(0), ¢(0)) :
(q(t),p(t)) is given by solving Hamilton’s equations, which are typically non-
linear due to the interaction potentials Vj;. The linearized dynamics come
from differentiating the nonlinear flow with respect to initial conditions. To
analyze these, we consider the Hessian matrix of the potential energy eval-
uated along the trajectory (q(t),p(t)). So for h: V — R differentiable such
that Vh is differentiable, we write

H(h)(v) :== D(Vh)(v) € L(V,V).
for the Hessian at the point v € V. We also want to formulate mixed

second partial derivatives with respect to the vector variables ¢, so for
U : Q8% — R we define

82U ou g * pos (pos
3%8(1]' (Q) =D ((a%) ) (Q) o 71-pos,lc € L(Q{k}ag{]})

However, because

T
<8U> (Q) = (DU(Q) o 7T;;os,j)T = WPOSJ(DU(q))T

we have o
U *
aqkaqj (Q) = WPOSJ ° H(U)(Q) o 7Tpos,lc

LEMMA 2: Let Q(t) be a path in Q8”. The Hessian matrix of the potential
energy part of the Hamiltonian

U
0qr0q;

B(t) := [B’fj(t)]j,keA’ where By;(t) :

11



with
Ulg) :== Z a kH2+ > Vilae — @)
kGA k JEA
has the following block structure
=vj+ Z H(V, —Qu(t))
leA
Byj(t) = —H(Vi;)(Qr(t) — Q; (1)) (4 # k).

In particular, we have By;(t) = Bj(t) = Bji(t)T.

Proof. We first calculate the first partial derivatives of U: the total deriva-
tive equals

DU( Z Vidk * Tpos,kV
keA
1
+ 5 Z D<Vkl)(qk - QI) % D(ﬂ—pos,k - 7rpos,l)(v>
kleA
= Z VidQk * Tpos,kV + = Z D Vkl (Qk - QZ)(Wpos U — 7Tpos,lv)
keA k JEA
so that
DU(q) o Tpes ;(v) = vigj v + 5 Z (0k,5 — 01,) D(Via) (qr — q1)(v)
k leA
meaning that
T
oU
((y(Q)) viq; + 5 Z VVilg — @) — VVij(a — g5)
4 2/
= vigj + > VVilg — a)
leA

Calculating the full derivative of this, we see that

ou\"
D ((3@1) ) (q) = ViTpos,j + Z D( vvjl)( —q)o D(WPOSJ WPOS’Z)
J

leA

= VjTposj + O H(Vit)(gj — @) © (Tpos,j — Tpos,t)-

leA
Diagonal blocks: For j = k, we compute
0*U
Bj;(t) = qug(@(t))

au\" .
=D ((%) ) (Q(t)) © Thos,j

=vilq+ > H(V;)(Q;(t) — Qu(t))

leA

12



where in the last step we used that 7 © wposj = 0;,j1q and Vj; = 0.
Off-diagonal blocks: For j 7é k, we calculate

By;(t) = 8 ” 8 q] (t))
( aq; ) posk
= —H(V. gk Qj (t) — Qr(t))

= —H(Vi;)(Qr(t) — Qj(t))

where in the last step we used that Vjp(xz) = Vij(—x), so VVj(z) =
—VVjj(—x) and H(Vji)(x) = H(Vj;)(—2). This also shows that By;(t) =
Bj(t), and since the Hessian of a smooth function is symmetric, we indeed

S 2
see that By;(t) = Bji(t)T, as the identity %(q) = Tpos,j O H(U)(q) 075 1

suggests. [

Next, we again consider the Jacobian blocks describing the sensitivity
of the flow with respect to initial conditions. The position and momen-
tum satisfy the Hamiltonian differential equations, and as we show in the
next Lemma, because everything is sufficiently smooth, we can permute the
time derivative and the derivative in the initial data to arrive at differential
equations for the derivatives of position and momentum with respect to the
initial data.

LEMMA 3: Let (P(t),Q(t)) be solutions of the Hamiltonian system

H(q,p) = 27HPJ||2+Z Jl\qg||2+ > Virlaj — aw)-

JEA JEA ]keA

For each k,j € A we define

x50 = 220 e 000 200) = 2200, Q0
vis(0 = 2 P00 Wiyt = 20 0. Q)
Then the variational system satisfies
Xij () = Vs (1), Xpj(0) = yj1a
Yij(t) = — ZleA By, () Xi;(1), wign ) YRi(0)=0
Z1ij(t) = Wi (1), Zj(0) =0
Wi (t) = — ZleA B (t)Z15(t), Wi;(0) = 0xjla

where By;(t) is the Hessian of the potential part of H with respect to posi-
tions k and j, i.e.
02U

By;(t) = 24x04;

13



whose matrix elements are explicitly given by the formulas obtained from
Lemma [2

Proof. The initial values are easy to check because ®( is the identity, so

dqx(0)
0q;

= Tpos,k © D(CI)O) o = Tpos,k © ™

;;os j pos,j 5k7j Id
and similar for the rest.
To verify the system of differential equations, we define ® : Rx Qp — Qp

by ®(t,p,q) := ®(p,q). We are looking to express

(3%(')

0q;

dXp;, d
Py _ 4 <p<o>,c2<o>>> (1

or osk O P
T dt (paq]( aP(O),Q(O))> (t)

0 (om o0s,k © o
2 (@) (t, P(0),Q(0))

(here we have used the notation aqug')(P(O), Q(0)) for the map ¢ — 3%’;5 ) (P(0),Q(0))

and similarly in the second line). Since

aﬂ'pos,k o

R x Qp — L(QP, QP
90, ( )

{a}> "k}
is linear-operator valued function in finite dimensions, we can consider the
partial derlvatlve in a strong sense; it therefore suffices to evaluate the partial

derivative of W‘é‘j; 2P for all i = 1,...,d, which are ap’% applied to the
5,0

#’th unit vector in QP
{7}

We note that aaH Qp — Rand 8H : Qx4 — R are smooth for all k € A
and ¢+ = 1,...,d, so ® is the solutlon to an ordinary differential equation
whose time derlvatlve at time ¢ is a smooth function of the value at time
t; by standard results, this means that ® is a smooth map (see e.g. [I8
Sec 32.4]). Since this in particular means that it is C2, we know that its
derivatives commute, and therefore

0705 0 P
= g (6 P(0),Q(0)
j7l

= gg; (7500 (P0.QO)

(see e.g. [19, Prop. C.6]). By Hamilton’s equations, we know that

Qi (,, _ OH L L
ot (t)_8pk,¢(P(t>’Q(t)) = I,

(P(t),Q(t))

14



for all trajectories (P(t), Q(t)) = ®:(P(0),Q(0)), k€ Aandi=1,...d. We
can reformulate this as

o . T
o2 1, q) = NP D ) (S @0
meaning that
O*mpos); 0 P 0 IHN\T
W(t,P(O),Q(O)) = 90, ((apk> o(I)t> (P(0), Q(0)).

So we conclude that

dX 0 OHN\T
i) - ((apk) o) (P0).00)

62H 0*°H
t),Q(t)) o Xy;(t) + E

=2

3q16pk P(t),Q(t)) o Yi;(t)
leA

By similar calculations we see that

dYy.; O*H O*H
Wj( ) _leZA 8q18qk (P(1),Q(1)) o Xu5(t) + OO P(1),Q(t)) o Yi;(t)
de] 82H
IGZA aqlﬁpk t),Q(t)) o Zy;(t) + m(P(t), Q(t)) o Wi;(t)
2 2
=" ;2 (P,Q() 0 Z(8) + 5 (P(E).Q(0) o Wis(0)

Since our Hamiltonian doesn’t contain any mixed position and momentum
terms, the mixed position-momentum derivatives vanish. One easily calcu-
lates that

T
apk mom,k (9])1 8]% mom, mom,l

We can therefore reduce the system of differential equations above to

dfjﬂ' (t) = miykxt)
dYk] .
dj;w (t) = fw )
de
0 =-2 aql 5o (P(0,Q(0)  Zy (1)

where U(p,q) = H(p,q) — S ken llpx|/? is the potential function. By Lemma
2 the result now follows. O]
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LEMMA 4: The solutions to the ODE’s defined in Lemma [3 are all uniquely
defined.

Proof. Fix A € T finite. For each pair j,k € A consider the variational
blocks
X (1), Yas (1), Zij (t), Wiy (1) € R4

satisfying the system of ODEs as described in Lemma [3]
By Assumption , and the fact that the flow ®(¢) is continuous, the
matrix coefficients By;(t) are continuous in ¢. In particular,

Vi + Z IH(Vi)llop,cor  J =k,
[ Brj()]loo < leA

||H(ij)||0p,oo’ Jj#k,

and the right-hand sides are finite by the decay assumptions on partial
derivatives of Vj; for all k,j € A. Hence the map ¢t — By;(t) is bounded
and continuous.

We now stack the unknowns into

Tij () = (Xug (1), Yig (£), Zg (1), Wi (1)) |
Then
0 M 0 0
Thj(t) = Ak (O)Ths (1), Ax;(t) = _ng(t> 8 8 M(Z‘jl ’
0 0  —Bg(t) 0

where M,;jl = 5kjdiag(m;1]d). By the observations above, Ay;(t) is contin-
uous and bounded. By standard results, the linear non-autonomous ODE

Trj = Ay ()T
admits a unique global solution T};(t). Hence, Xy;(t), Yi;(t), Zi;(t), Wi;(t)
are unique for all ¢ € R. Since this holds for any pair k, j, we are done. [J
3.2 Second-order differential equations and integral formulas

We study the evolution of the Jacobian block matrices defined above.

Consider X};(t). From the equations of motion, we know that:

Xij(t) = iij(t),

mg
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where Y;(t) := d%’;gt)( (0),Q(0)) € R4, Differentiating both sides with

respect to time gives:
d . 1 .
g7 Xhi(t) = —Vij(t).

d mp

Xij(t) =
From the linearized equation for Yy;(t), we have:

V(1) Z B () Xy5(t)
leA

where By (t) € R¥? is defined as in Lemma [2| Substituting into the second
derivative of Xy;(t), we obtain the second-order evolution equation:

Xj(t) = —7 > Bu(t)Xi;(t).
leA

This equation holds with the initial conditions:
Xij(0) = Oxsla, Xij(0) = 7Ykg(0) 0.

Since the initial velocity is zero, we apply Duhamel’s principle to solve the
second-order system:

t
ij(t) = Opjla — / (t—s) ZBkﬂ Xl] s)ds.
0 ke

To verify this formula, we compute the time derivative:

Xkl(t):_% (/Ot ZBkJ s) ds )

jGA
t o 1
= — ; a(t —5)- p— Z By (s)Xji(s)ds
kjen

[ S B () ds

where we used the differentiation rule

d It B tyf
%/0 f(t,s)ds_f(t,t)+/0 At

Differentiating once more gives:

Xu(t) = —% (/Ot n}bk Z Byj(s)Xju(s) ds)

- _723161

]GA
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which confirms the second-order equation.

Analogous computations show that Yy;(t), Zy;(t) and Wy;(t) satisfy expres-
sions of similar type. We omit the computations for brevity. In summary,
the full system of evolution equations can be written as:

t .
ij(t) = (5ij(1 — / t — 8 ZBM Xl] S, ij(O) = 5ijd, ij(()) = 0;
0 Mk jen

Yij (1) / > Brj(s)Xju(s)ds, Yi;(0) =0, Yi;(0) = —By;(0);

leA

t . 1
ij(t) = miékj[d — / t — S i lEZABkl Zl] S, ij(O) = 0, ij(O) = mfk(skjfd;
Wkl( ) = 5k]Id —/ ZBM Zl]( )dS WkJ(O) = 5ijd7 Wk] (O) = O
leA
3.3 Estimates
We now derive operator norm bounds for the entries of the matrix By;(t),
using the assumed decay of the interaction potentials, ¢f. Assumption [I}
In particular, given (iii) the potentials Vi;: RY — R satisfy the following
exponential decay condition on their second derivatives: there exist con-
stants Cy and Cy; for all j,k € T', such that
IH(Viej) lopoo < dCiiCY,
where Cy; < ||V||F(d(k, j)), with F': R>g — (0, 1] a suitably decaying func-
tion, see Section [1] for the precise definition. Therefore,
(Vi) llopoo < dOF [ F (d(k, 5))-
Recall from Lemma [2that By;(t) is defined via the second derivatives of the
interaction potentials
vi+ Y H(V)(Q;(t) — Qu(t), =k,
By;j(t) = leA
—H(Vij)(Qk(t) — Q;(1)), j#k.

We thus obtain

vi+ Y IIH(V; —Qut)ll,, < v+ _dCY|IIF(d(5,0), =k,
[ Brj () [loo < leA leA

dCT || F(d(k, 7)), j# k.

18



3.3.1 Dyson expansions

We derive Dyson expansions for each Jacobian matrix. We give the proofs
for X};(t) and Yj;(t) explicitly, and leave the analogous computations for
Zy;(t) and Wy;(t) to the reader. Given the similarities between Xj;(t) and
Zi;(t), as well as between Y};(t) and Wy;(t), their computations are nearly
identical.

PROPOSITION 5: Let t € R. For all j # k it holds
[ X5k()llop < F(d(j, k))(cosh(v/Cot) — 1),
1Yj(8)llop < F(d(j, k) v/ Cosinh(v/ Colt]),

1250 lop < PG, k))mu@?

Wi (®)llop < F(d(j, k))(cosh(v/Cot) — 1)

In particular, because the right-hand side does not depend on the choice
P(0),Q(0) in the definition of X (t), Y;x(t), Z;x(t) and W; 1 (t), we have

94;(t)
Oqr 0p,00
Op;(t)

< F(d(j, k))(cosh(v/Cot) — 1),

< F(d(j, k))/Cosinh(y/Colt]),

0 op,00

aqj(kt) < F(d(j k))w ?
apk op,00 N g \/CTO 7

WO < Fag, b)) (cosh(vCot) — 1)

Pt lop,co

These decay estimates show that each matrix entry inherits the expo-
nential decay in space via F'(d(j, k)), with explicit controlled time growth.
To prove the proposition, we first deduce the Dyson expansion for X (t),
stated in the following lemma.

LEMMA 6: Forn >0 and all j,k € A, let

X () =~ /0 (PR o Bra(s)X\"(s) ds,

Mk 1en
and X,gg) (t) = 0x;jlq. Then, whenever j # k,

(Cot?)"
(2n)!

X2 () llop < F(d(k, ),

where

Co = [l oo max {([[V}oc + dCY | W[ F]). dCH ¥, 1}.

19



Here, [m™"||oc = sup;, Im; Yand ||v|le = sup; |vj|, and the constants Cr
and ||F|| are the ones deﬁned in Assumption [I} In particular, whenever

k#j .
S X ()llop < F(d(K, ))(cosh(v/Tot) — 1),
n=0

and Xp;(t) = Y000 X7 ().

Proof. The first assertion is proved by induction.

Base case n = 0:
By definition,
X\(t) = Gl

and F(d(k,7)) > 0. In particular, when k # j, we obtain 0 = HX(O)( t)] <
F(d(k, j))-

Inductive step:
Assume the claim holds for some n > 0. Then,

X Ollop < [ 1= b e S 1806 e - 15875l

leA
Split the sum over [ into diagonal and off-diagonal parts:
S 1B () lopl X () lop = 1Bt (3) o1 X7 () lop+ 3 1Bra(5) lop | X5 (5) -
leA I#k
Recall that the matrix elements of Byy(t) satisfy

[Brr)lop < [[Vlloo + dCH¥|| D F(d(k,m)),
meA

and for k # 1

1Bu(t)lop < dCT (¥ F(d(k, 1)),
where F' is the decay function (with £(0) = 1). We can absorb the diagonal
contribution into the decay estimates and obtain

Z”Bkl ||0pHXl] ( )Hop§

leA

2 (Cos®)" , 2 (Cos*)"
[Vlloo + dCH® || D F(d(k,m)) —F(d(k, 5)) + Y _ dCV %] F(d(k, 1)) ,
(2n)! (2n)!
meA l#k
where we have used the induction hypothesis. Applying the exponential de-

cay properties and the convolution bound, there exist constants Cr, | F|| >
0, i.e. such that

sup Y F(d ) < [|F|; and ) F(d( (d(1,7)) < CpF(d(k,7)).
meAN leA

Fd(, 5)),
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Combining these estimates yields,

S 1B lopll X (8) lop <
leEA

(Cos?)"
(2n)!

(Cos*)"
(2n)!

(IVllo + dCF 1 |[1F]) F(d(k,j)) + dCF | ¥[|CF F(d(k, 7)))-

Since
Co = [m™ oo max {(|[v||oc + dCF||¥[[[|F||), dCF | ¥||Cp, 1},

it follows that

I oo 3 1Bt lopll X (5)lop < CoF(d(, ) G0
[e's} kl op lj op > 0 ) (QTL)'
leA
Hence,
ntl o
(n+1) < N / _ae2n
IOl < Pl ) sy [0 = s)s2nas.

We then evaluate the integral using the substitution u = s/|t| and the prop-
erties of a Beta integral,

" |
/ (t] = 5)s>ds = yty2n+2/ (1= w)u?rdu =
0 0

Therefore,

|t|2n+2
(2n+1)(2n+2)

Cg+1|t‘2n+2
(2n)!(2n +1)(2n +2)

X0 (O lop < F(d(R, )

which is equal to

(COtQ)n—f—l

X () lop < F(d(k, §)) ot
By the principle of induction,

(Cot*)"
(2n)! 7

XL () lop < F(d(k, )

for all n > 0. Finally, for k # j we sum over n > 1:

5 |x&e|, = > [x
n=0 n=1

This proves that the Dyson series defined by

> 2\n
< k) S S5 = Pl ) cosh(/Cat) ).
n=1 :

O

e}
Z X,g?)(t), where X,g(;) (t) = Onjla,
n=0
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converges absolutely. A direct computation shows that this series satisfies
the second order differential equation for Xj;. On account of Lemma EL we
conclude that

Xij(t) = Z X,i?)(t), where X,g(;)(t) = 0k 14
n=0

We now derive the Dyson expansion for Yy;(t).
LEMMA 7: Forn > 1 and all k,j € A, define

t
v =~ [ 3 Buox () ds,
0 lea

and Y\ (t) = 0. If j # k, it holds

Cyltpn

(n)
1Y llop < Q=11

F(d(k, 7)),

and ||Y,€(J(.)) (t)||op = 0. Here, the constant Cy is the one defined by Lemma @
In particular, if k # j

S IV (0)lop < F(d(k, ))v/To sinh(y/Tlt]
n=0

and
[e e}

Y1) = Y v )

n=0

Proof. We proceed by induction on n.

Base case (n =1):
From the definition,

v ) =~ /0 t > Bu(s) X (s) ds.

leA
Since XZ(JQ)(S) = 01514, we have

It It
1Y Ollow < [ 1Bis(5)lop ds < CoF(dlh, ) [ ds = [1lCaF (d(k, ),

where the final last inequality follows from the estimates on By; for k # j.
Inductive step:
Assume that

Cnt2n—1 '
O Pd(k, ),
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holds for some n > 1. We want to prove it for n + 1. Using the recursive

definition:
0 [
leA

we estimate the matrix elements as follows:

(n+1
@ < [ 5 135 e 155 s
leA

Using the bounds on Xl(jm(s) and By (s) (cf. Lemma IEI), we obtain

Cn+1 2n

ST B () llop - 155 (5)lop <

W F(d(k,j))-
leA ’

Then,

Cn+1

n . I¢] . _ CntL g2+l
I n < Pl ) (o [ ds = Pk ) - G )

@2n)l(2n + 1)

As a result,
Cgﬂrl |t | 2n+1

(2n+1)!
This completes the induction step. Thus, for all n > 1 and k # j,

Y @) lop < Fd(E,5)) -

(n) < Gonr! .
1" Ollop < 57 (k7).

Summing this series for j # k gives

Z 1V @) lop <

This shows that the Dyson series

00 Cn’ﬂZn 1 . ' '
(2n—1)! F(d(k, 7)) = F(d(k, j))v/Cosinh v/Colt].

n=1

o

Yis(t) = Y v, with v (1) =0,
n=0

converges absolutely and satisfies the relevant integral equation. By unique-
ness (cf. Lemma , this series is the solution. O

THEOREM 8: Assume all the conditions in Section [2.1] are satisfied for the
discrete set I'. Let Hy be defined by . For X,Y € I' be such that they
are spatially separated, i.e. dist(X,Y) > 0. Take any finite set A € I" with
XUY CA. Let f € CH(2x) and g € C}(Qy). Then, there exists a positive
constant Cy independent of f and g, such that for all t € R

Heh(£): 9}lso < 4llfllerllgllor v/Cosinh v/ Cot|D(X, Y), (6)
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where

=Y > F(d(z,y))

zeX yeY
In particular, for all t € R

{ah () g}loo < 4llfllor lgllcrv/Coe(Y@H-1)D(X, V), (7)

Proof. Let us first assume t > 0. We already know from the computations

in Section B

dq Ip;(t) 9g;(t) Ip;(t)
SO IS T el MR e TR sl R el 2
[{a(f), g}l Hfllcll!gllclje)lg{ 30 llopoo” | 0t Nlopoe | 30 lopoo” I 0Pk llopac
key
Moreover, for t € R
{Ha% Hapy t) Ha% t) Hapj t) }
8Qk op,00 Oqx, op,00 Op; op,00 Opy, op,00
< VCoF(d(7,k))sinh(v/Colt|),
where
Co := [[m™ oo max {([[V]|oc + dCT ||| F|)), dCF | ¥[|C, 1}
Hence,

H{ae(f), 9} lloe < 4llfllerllgllcr v/ Cosinh(v/ Cot) D(X,Y).
Note also that the case t = 0 implies that

[{eo(f), g} loo =0,

as it must be, since f, g have disjoint support. In particular, for all t € R

1A (£), g} loo < 41 Fllcr lgllen VCo(e¥ERl — 1)D(X, Y)Y, (8)
which follows from the estimate
sinh(v/Colt|) = ( VGolil _ mt) < %(emlt\ —1).
O

Note that, if I" is equipped with such a function F', then for every u > 0,

the function
Fu(r)=e " F(r) (9)

also satisfies the convolution condition with the same constant C'r (as follows
from the triangle inequality). Moreover ||F,|| < ||F||. Setting then

[ W] :== sup > 0; (10)

kjer Fu(d(k, 5))’
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it is easy to see that for all t € R,

[{ah(£): g} loo < 4l fllcallglor/Cusinh ((/Cult) 3= 37 e a5 p(d(x, y))

zeX yeY

< 4| fllcrllgllcry/Cpusinh (/Coult] e #H= Y min {| X, yYy}maxZF (z,9))

zel
= 4| fllcllgller/Cumin {| X, [Y [} F sinh (1/Cut]) e,

where C), is given by Cy with ||| replaced by ||¥,||. In particular,
Sinh(\/a]ﬂ) —p dist(X,Y) \ﬁm pdist(XY)

Hence, one obtains exponential decay in dist(X, Y’) whenever |t| < \/% dist(X,Y).
I

Notice that this holds for all fixed dist(X,Y') if |¢| is sufficiently small. There-
fore, we have obtained the following corollary.

COROLLARY 9: Assume the conditions of Theorem [§, For all 4 > 0 and
t € R, it holds

18 @
{4 (), g} loo < Cllflenllgllre M Et Y=

for come constant C' > 0 depending on the Hamiltonian, the supports X
and Y of the observables f and g, respectively, on the function F', and on

1.

4 Existence of the global dynamics

The first step in defining global dynamical system, is the construction of
a C*—algebra. Since we are dealing with infinite particles lattices systems
for which the single-site phase space is non-compact and unbounded, one
has to be careful. A promising and convenient framework is provided by
the commutative resolvent algebra [14], a recent development that has been
shown to arise as the strict classical limit of the non-commutative resolvent
algebra originally introduced by Buchholz and Grundling. This algebra is
specifically tailored to accommodate the difficulties presented by unbounded
configuration and momentum variables, making it a natural setting for de-
scribing observables of infinite classical systems [I5]. Importantly, if X is
an infinite dimensional normed vector space, the commutative resolvent al-
gebra Cx(X) can be constructed as the inductive limit of algebras Cy(V')
over finite-dimensional subspaces V' C X, capturing the quasi-local nature
of observables in a natural and well-behaved manner [2], 14]. This inductive
limit structure is crucial for studying the thermodynamic limit: infinite sys-
tems emerge as limits of increasingly large finite subsystems. This approach
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facilitates a rigorous algebraic description of physically significant phenom-
ena such as spontaneous symmetry breaking and phase transitions, which
are inherently infinite-volume effects, yet arise from finite approximations
[8, 17, [16].

4.1 The commutative resolvent algebra

The commutative resolvent algebra is defined as follows. Let X be a (possi-
bly infinite-dimensional) real-linear inner product space. The commutative
resolvent algebra of X, denoted Cx(X), is the C*-subalgebra of the algebra
of bounded operators C},(X) generated by resolvent functions on X, i.e.,
functions of the form

Wy (y) = 1/(GX -z - y),

for x € X, A € R\ {0}. Here, the inner product - is the one standard one
induced by the complex structure compatible with the symplectic form. The
inner product on X yields a norm ||-|| and a topology with respect to which
h) : X — C is a continuous function.

We now consider Cx(€2), with Q = £.(T', R?") C ¢*(T',R?") defined in Section
As a result, Cx(2) is the inductive limit of the net of all Cx(V'), where
V' C Q) ranges over all finite-dimensional subspaces of 2, and the connecting
maps defining this limit are the pull-backs of the projection maps W — V
for V-.C W. This remains true if one restricts the net to any cofinal class of
finite-dimensional subspaces. It follows that

Cx(©) = lim Cx(2y),

where the inductive limit is taken with respect to the pull-backs of my | :
Qp — Qp (A C AN e@T), where mp : Q — Qp is the orthogonal projection
onto Q. Hence, Cx(2) is an algebra of “quasi-local” observables, containing
a dense subalgebra of “local” observables, i.e. functions that only depend
on finitely many particles.

We define the subspace 8x(€2) C Cx(£2) as the span of so-called levees g o
for which g is Schwartz, namely

S8z(2) :=span{g o7 | m fin. dim. projection on 2, ¢ € 8(ran(m))}, (11)

where 8(ran(7)) denotes the Schwartz space on ran(w). More generally, a
“levee” is a function f = gom € Cx () for a finite dimensional projection 7
and a function g € Cp(ran(m)). By [14, Prop. 2.4] the set S¢(Q2) is a dense
*-subalgebra of C'z(12).

We can put a Poisson bracket on 8%(€2) by use of the canonical Poisson
bracket on C®(Q,) = C® (RN as follows. For any two functions fi, fa €
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S»(2) we can choose A € I' large enough such that f; = g1 oy and fo =
g2 o mp for functions g1, g2 € Sx(2x) C C*(Qy), and where 7 : Q@ — Qp
denotes the orthogonal projection. We define

{91 0oma, g2 0mA} :=={g1,92}A 0 A,

where {g1, g2} is defined by

{gla 92}/\ D, q

0 ,q) 0 ) 0 ,q) 0 )
ZZ( 91(p,q) 992(p,q)  0g1(p; q) Dga(p Q)>7

jeEN i=1 aq] i ap]ﬂ apj,i aQJ:i

for all (p,q) € Q4. One can prove that {g; o mp, g2 o mp} does not depend
on A and lands in 8¢(2). Note further that this bracket coincides with the
one defined in Section .

This algebraic formalism of resolvent algebras allows one to derive a
global C*-dynamical system. This has been particularly proved in [I5, Thm.
14]. In this paper, we provide an alternative proof making use of the Lieb-
Robinson bounds obtained in the previous section. The main result is the
following theorem.

THEOREM 10 (Existence of Infinite-Volume Dynamics): AssumeT is equipped
with a function F satisfying the conditions in Section [2.3. Then, the lo-
cal automorphism a{\ converges to a globally defined automorphism of the
commutative resolvent algebra Cg(Q2), as A — oco. Moreover, convergence

is uniform for t in the compact intervals [—T,T].
Proof. Let us first take ¢t > 0. Fix a local observable
fe SR(Q)() C C:R(Qx),

supported in a finite set X C I'. Let A1 C As be finite subsets of I' such
that X C Ay. For a finite volume A C I', write

har znt har __ HpkHZ VqukHQ int
Hy=H" + H{", H" => + , Hy"=)"V(z

hen \ 2 2 ZCA
(12)
where
1 .
sVi(ae — ar)s it Z={k,1};
W(Z)(prg) = | 2R D) th 1}
0, else

We denote by CD? A the flow of the harmonic oscillator, the time evolution
by N
o (f):=Fo@Ph, f € ().

Since CD? A g only a rotation, the pullback leaves the commutative resolvent
algebra Cg(€2y) invariant, i.e.

f€Cx(Q) = aP(f) € Cr().
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We also define the interaction-picture observable
0,A
7 (f) = fo @) 0 @,

where @2 denotes the flow of the full Hamiltonian Hy. It satisfies the time-
dependent equation

d ZTL

dt A { t f)}7 Vé\(f):f7 (13)
with the interaction-picture Hamiltonian

HiPt(t) i= o2} (HPY = S w(2) 0 3% (14)

ZCA

Let us denote by B the set of all Z C Ag for which Z N (A \ A1) # (0. Then,
defining

F(s) =2 (,(f), seo.1,
it follows that

) =) = FO) - FO) = [ FGs)ds
= [dsm= (1A 6) - ARG (0)), (9

with
Hmt( mt Z ao 2\2
ZeB
We are going to use the classical Lieb-Robinson bound for bounded interac-
tions to estimate the norm difference

172 (f) =% () oo (16)

To this end, note that v, (f) is still defined in Cr(€y,), since the local
dynamics o leaves the algebra Cg(€2,) invariant for each ¢t € R and A € T,

and the part coming from the harmonic oscillator only rotates [15, Thm.
13]. Let us now estimate . Using the identity obtained in , it holds

2 () =7 (Dllee < 2 /dS\\{aosA2 ({ks 1) 92 () Hloo

{k,j}€B

= > [ arla Wk (D e

{k.j}eB
We further estimate the integrand

{at2 @k D)V ()} . 9)
(3 oWy o 2 ) q)>T5%Al ()

10(Vig0 922 ) )T‘O‘vw
+ |z ) - 9 .
(2 94, (p,q) p; (P, q)
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As proved in [I5, Lemma 15], for all ¢ € R it holds

H O(Vigj 0 @)
3%

< dCuCy < ||V||dCy F(d(k, 7)),

op,o0

where the last inequality following from Assumption [3] Let us write

O, (p,q) = 22 0 dMi(p, ) = BV (p(7), q(7)) = (B(7). 4(7)).

Then, by the chain rule,
M) [ (O " oa () Of
5oy = ¥ [( @) D)+ (g (@

where

reu
/—\
N
S~
&)
ofF
)
—~
=
=)
L=

- A
gi(T)(p, @) = (22 (p(7), q(7)))2.
Since f € Sr(flx) each of its (first) derivatives are uniform bounded, i.e.

I fllcr < oo, it again follows that by the chain rule that

. a(@%A11 T
D) )+ X i), ) 24T, q>) .

Pt A Opk

- 0,A1\q
0g;(7) o(®=r);
) = T ) T
op P D=2 (p(7),q(7))
(17)
Furthermore, as ®% is a harmonic rotation and the coefficients are all

bounded (Assumption [1| (iv) and [I5, Lemma 15]), we may estimate

Haq] (Ha% ) Hapz(ﬂ )
apk op,00 leX op,o0 apk op,00
and similarly for % 7( 7) (p, q). The norms on the right-hand side are estimated

as follows. If we let

e |20

Ope(t)

H 9qu(t)
op,00 ’ 8qk‘

H Ope(t)
op,00 "Il Opr,

)
op,o0 ’ apk

0p,00 }

it follows from the above that

9q;(7)
Opk

<2 Ju(t)

op leX
This entails the bound
M (f)
— T 7 <4 1 Jo(t
H o <A fller Y Je(t)

op lexX

Similarly,
<A fller Y Je(t)

op leX

i
Op;j
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We conclude that

{282 @k, ). a2 (0} | < 4dlfler [ IOV (k. 3)) Y (an(t) + Ty e
e leX
(18)

Hence, using the decay estimates on the Jacobians from the previous sec-
tions, this further implies that, is bounded by

Chy/Crusinh(V/Colt)) F(d(k, 5)) 3 (F(d(4, k) + F(d(L, ),
leXx

where C{, absorbs the constants 4, Cy, || f||c1,d and || ¥||. Continuing from
the previous estimate, integrating in time yields

[

< OBk, ) 3 (FI(E ) + F((e, ) [ sinb(/Co)ds. (19

leX

{of etk ad )} | ar

Using

It
/ sinh(1/Cops) ds < (cos(v/Colt]) — 1) cos(v/Colt])
0

we get the following upper bound for , ie.

< CoF(d(k, 7)) Y (F(d(£, k) + F(d(£, 7)) cosh(v/Colt]).

leX

\ﬁ

Summing over all pairs {k,j} € B, where B is the set of interactions inter-
secting As \ A1, we have

/t
(kjres 0

Cocosh(VColt)) D Fld(k,j)) Y (F(d(L, k) + F(d(, 7))

{k,j}eB ex

ol (kA ()} | dr <

Using the convolution property of Fpy, this quantity is bounded by

< 2CpCyeosh(VColt) Y. >

leXx LL‘GAQ\Al

Since £ € X C Ay, we use the properties of F' (see Section and finiteness
of X to conclude that

> > F(d(t,x)) =0,

leX {EGAQ\Al
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as A1, Ao /" T. Putting all together,

> [ et ram.s f)} H dr <
{k,l}eB -
2CrC’ cosh \/Ci'o’t’ Z Z 2)) =0, (Ao, Ay /T

teX weA\ A

From the right-hand side one immediately sees that *yl{\ is a Cauchy net
in Cx(£2), hence convergent.

Finally, recall
W =alieal(f) = af(f)=rl(fo ) =a{(fo 27

where <I> X is the free harmonic oscillator flow restricted to X. Note that
fodY X! € Cx(2x) is a function independent of A. Hence, if Ay, Ay grow
large,

o (f) = e (F)lloo — O,

as desired. From our bounds it is clear that this holds for any compact time
interval. To conclude we note that the facts

o ay(-) extends to all of Cx(Q);
o ay(+) is an isometric *-homomorphism;
e t— qq is a group homomorphism,

are direct consequences of the proof of [I5, Thm. 14]. Hence, t — a4 is a
one-parameter subgroup of automorphisms of C'3(€2) and thus describes the
infinite-volume dynamics. This finishes the proof. O
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