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Abstract

The aim of this paper is two-fold. First, we prove the existence of Lieb-
Robinson bounds for classical particle systems describing harmonic
oscillators interacting with arbitrarily many neighbors, both on lattices
and on more general structures. Second, we prove the existence of a
global dynamical system on the commutative resolvent algebra, a C*-
algebra of bounded continuous functions on an infinite dimensional
vector space, which serves as the classical analog of the Buchholz–
Grundling resolvent algebra.
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1 Introduction

Lieb-Robinson bounds provide a fundamental insight into the effective local-
ity of interactions in quantum and classical many-body systems. Originally
established by Lieb and Robinson in the context of quantum spin systems
[5], these bounds quantify the maximal speed at which information and
correlations can propagate through a lattice of interacting particles. De-
spite the inherently non-relativistic nature of such systems, Lieb-Robinson
bounds imply the existence of an emergent light-cone-like structure, limiting
the influence of local perturbations to a finite velocity, commonly referred
to as the Lieb-Robinson velocity.

The significance of these bounds extends beyond their conceptual appeal,
playing a crucial role in rigorous studies of the dynamics of infinite quantum
systems, the stability of topological phases, and the derivation of properties
such as exponential clustering of correlations and the existence of thermo-
dynamic limits [12, 4, 11, 10]. More recently, Lieb-Robinson bounds have
also been formulated and applied in the analysis of quantum lattice systems
with infinite degrees of freedom [3, 9, 13], broadening their applicability; in
particular, in the context of resolvent algebras [3].

Analogous bounds also hold in classical many-body systems, where, de-
spite the absence of non-commutativity and unitary evolution, effective lo-
cality emerges under suitable conditions. For example, in Hamiltonian lat-
tice systems with finite-range or rapidly decaying interactions, it is possible
to rigorously derive finite propagation speed estimates for perturbations,
closely paralleling the quantum setting. Such classical Lieb-Robinson-type
bounds have been proven for systems of coupled anharmonic oscillators and
classical spins [6, 7], offering insight into the finite-speed propagation and
supporting kinetic descriptions in the thermodynamic limit.

A particularly important class of models where these ideas apply is given by
(an)harmonic lattice Hamiltonians. Here, each lattice site hosts a particle
with a continuous degree of freedom, confined in a potential and coupled
to its neighbors through linear or nonlinear forces. Such models serve as
paradigms for the study of macroscopic non-equilibrium phenomena, such
as heat conduction, emerging from many-body Hamiltonian dynamics [1, 9].

In line with these considerations, this work addresses a broad class of
infinite classical particle systems characterized by general interactions and
heterogeneous lattice structures. More precisely, we consider Γ to be a
countable index set, which can be interpreted, for example, as a lattice
embedded in Rℓ. Around each site k ∈ Γ, a particle is confined by a harmonic
potential, while particles at different sites interact via pairwise attractive
and/or repulsive forces. Denoting by qk the displacement of the particle
at site k from its reference position, and by pk its momentum, the formal
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Hamiltonian governing the system is given by

H(p, q) =
∑
k∈Γ

(
∥pk∥2

2mk
+ νk∥qk∥2

2

)
+ 1

2
∑

< fk,l∈ΓVkl(qk − ql), (1)

where the mass parameters mk > 0, the harmonic force constants νk > 0,
and the interaction potentials Vkl vary with site indices and satisfy appro-
priate smoothness and summability conditions (see Section 2 for precise
definitions).

Unlike many traditional studies which assume uniform masses and force
constants and impose periodic lattice structures, our framework allows for
fully inhomogeneous parameters {mk, νk} and considers arbitrary countable
sets Γ without reliance on any underlying geometric regularity. The ther-
modynamic limit is formulated purely via the natural partial order on finite
subsets of Γ under inclusion. This generality enables our results to apply to
a broad spectrum of solid-state material configurations, including but not
limited to perfect crystals, amorphous solids such as glass, doped metals
with irregular impurities, and novel nanostructures.

To analyze locality and propagation properties within this general frame-
work, Section 3 establishes a Lieb-Robinson-type bound for classical dy-
namics. Specifically, for any finite sublattice Λ ⋐ Γ of a fixed discrete set Γ
and any pair of bounded, smooth observables f and g supported on disjoint
subsets X, Y ⊂ Λ, we show in Theorem 8 that the time evolution under the
classical Hamiltonian flow satisfies the estimate∥∥∥{αt

Λ(f), g
}∥∥∥

∞
≤ B∥f∥C1∥g∥C1 D(X, Y )

(
eA|t| − 1

)
, (2)

where αt
Λ denotes the pullback by the Hamiltonian flow on Λ, {·, ·} is the

Poisson bracket, ∥ · ∥C1 is the C1-norm, and A, B > 0 are constants inde-
pendent of f , g, and Λ. Here,

D(X, Y ) :=
∑
x∈X

∑
y∈Y

F (d(x, y))

with F : [0, ∞) → (0, ∞) a suitable function, cf. Section 2.3 for details. Note
that these bounds resemble a classical analog of the usual Lieb-Robinson
bounds known in quantum mechanics [9, 10, 11, 12].

Building on this, Theorem 10 constitutes our second key result: within
the framework of the commutative resolvent algebra introduced in [14] - a
classical analog of Buccholz-Grundling resolvent algebra [2] - we leverage
the Lieb-Robinson bound established in Theorem 8 to construct a global
C∗-dynamical system describing the time evolution of observables in the
infinite-volume limit.

This construction highlights the power of our algebraic approach: by
capturing finite propagation speeds even in classical systems with potentially
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non-integrable interactions, it provides a robust foundation for analyzing
locality and dynamics in highly general classical settings. Moreover, it opens
the door to extending these methods to quantum systems with equally broad
and physically realistic interaction structures.

2 Mathematical setting

We introduce our conventions and assumptions regarding the classical oscil-
lating and interacting (in)finite particle systems under consideration. Fix-
ing some notation, for F : V → W a differentiable map between finite-
dimensional real inner product spaces, we write DF (v) for the total deriva-
tive of F at v, meaning that

lim
h→0

∥F (v + h) − F (v) − DF (v)(h)∥
∥h∥

= 0.

We write L(V, W ) for the set of all linear maps between V and W . For
all linear functionals φ ∈ L(V,R), we write φT for the element of V that
satisfies φ(v) = φT · v for all v ∈ V . We also write ∇f for the gradient of a
function f : V → R, so that ∇f(v) = Df(v)T .

2.1 The phase space

We consider an arbitrary countable set Γ – typically interpreted as a discrete
subset of Rℓ, namely, as the set of points of confinement around which the
particles are pinned by a Harmonic potential. However only the set structure
of Γ is used, which already endows the set of finite subsets of Γ with a
partial order – inclusion – which is upward directed and hence defines a
thermodynamic limit. Assumptions on the material topology and geometry
will be encoded not in Γ but in our assumptions on the interaction potentials,
to be discussed in ␕ 2.2.

To each element of Γ we associate a phase space R2d, and our total phase
space is given by

Ω = ℓc(Γ,R2d) = ℓc(Γ,Rd) × ℓc(Γ,Rd)

consisting of pairs ω = (p, q) ∈ Ω of finite sequences p = (pl)l∈Γ, q = (ql)l∈Γ
for which each entry takes values in Rd. The components of pl (resp. ql)
in Rd are denoted pl,i (resp. ql,i) for i = 1, . . . , d. By construction Ω is
a countably infinite dimensional vector space which admits a natural inner
product induced by the inclusion Ω ⊆ ℓ2(Γ,R2d) into the square-summable
sequences.

Let Λ ⋐ Γ be any finite subset labeling the particles of a subsystem. We
define, for each finite subset Λ ⋐ Γ,

ΩΛ := {(p, q) ∈ Ω : pl = ql = 0 for l /∈ Λ} ∼= R2|Λ|d.
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We occasionally adopt the notation

Ωmom
Λ ={(p, 0) ∈ ΩΛ} ∼= R|Λ|d;
Ωpos

Λ ={(0, q) ∈ ΩΛ} ∼= R|Λ|d,

and we note that ΩΛ = Ωmom
Λ ⊕ Ωpos

Λ . We furthermore emphasize that

Ω =
⋃

Λ⋐Γ
ΩΛ.

2.2 Local Hamiltonians

For each finite Λ ⋐ Γ we consider the local Hamiltonian

HΛ(p, q) :=
∑
k∈Λ

(
∥pk∥2

2mk
+ νk∥qk∥2

2

)
+ 1

2
∑

k,l∈Λ
Vkl(qk − ql), (3)

for (p, q) ∈ Ω. Here, ∥ · ∥ is the Euclidean norm on Rd, and mk > 0 and
νk > 0 denote the mass and force constant of particle k, and Vkl denotes
the interaction potential between particles k and l, subject to conditions
below. We note that HΛ(p, q) depends solely on (pΛ, qΛ) = πΛ(p, q) ∈ ΩΛ,
and hence we may view HΛ as a function acting on the finite-dimensional
phase space ΩΛ. Observe furthermore that the model defined by (3) can
be interpreted as a generalization of an oscillating and interacting lattice
system.

For a multi-index β : {1, · · · , r} → Z≥0 with |β| = ∑r
i=1 β(i), we write

∂β := ∂
β(1)
1 · · · ∂

β(r)
d ,

where ∂
β(i)
i = ∂β(i)/∂x

β(i)
i are the usual partial derivatives of order β(i)

corresponding to the ith coordinate of Rd.
Assumption 1: The following conditions are assumed:

(i) Vkl(x) = Vlk(−x), Vkk(x) = 0;

(ii) Vkl ∈ C∞
0 (Rd,R) for each k, l ∈ Γ;

(iii) there exists a constant CV ≥ 0 and Ckl > 0 for each k, l ∈ Γ such that

∥∂βVkl∥∞ ≤ CklC
|β|
V

for all β : {1, . . . , r} → Z≥0;

(iv) 0 < infk∈Γ{ 1
mk

} ≤ supk∈Γ{ 1
mk

} < ∞, and 0 < infk∈Γ{νk} ≤ supk∈Γ{νk} <
∞.
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It is not difficult to see that the Hamiltonian vector field is globally
Lipschitz on ΩΛ [15, Sec. 2.5]. Therefore, by the Picard Lindelöf theorem
the Hamiltonian equations admit a unique globally defined solution for every
initial condition in ΩΛ. In particular, this guarantees the existence of a
continuous Hamiltonian flow

Φt : ΩΛ → ΩΛ,

which is a homeomorphism for each t ∈ R. We furthermore introduce the
following notation:

• (p, q) → arbitrary point in ΩΛ.

• pj , qj → position and momentum component at site j ∈ Λ of the
arbitrary point (p, q) ∈ ΩΛ.

• p(t), q(t) → the functions that take as an input an initial value (say
(p, q)), and output the value of the position/momentum at time t (so
Φt(p, q). In other words: p(t) = πmom ◦ Φt and q(t) = πpos ◦ Φt.

• Q(t), P (t) → Q(t) = q(t)(P (0), Q(0)) and P (t) = p(t)(P (0), Q(0)) for
some fixed choice of P (0), Q(0) ∈ ΩΛ.

2.3 Conditions on Γ
Let Γ be a countable metric space equipped with a metric d. We restrict
the geometry of Γ by assuming the existence of a function

F : [0, ∞) → (0, ∞),

with the following properties (see e.g. [9, 10]):
Assumption 2: We assume:

1. Monotonicity: F is non-increasing in its argument, i.e.,

F (x) ≤ F (y) for all y ≤ x,

and normalized such that

F (0) = 1.

2. Uniform integrability: For every fixed y ∈ Γ, the sum over all x ∈ Γ of
F (d(x, y)) is finite: ∑

x∈Γ
F (d(x, y)) < ∞,

and
∥F∥ := sup

y∈Γ

∑
x∈Γ

F (d(x, y)) < ∞.
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3. Convolution property: There exists a constant CF > 0 such that for
all x, y ∈ Γ, ∑

z∈Γ
F (d(x, z))F (d(z, y)) ≤ CF F (d(x, y)).

Consider the potential function Ψ defined on two point sets Z = {k, l}
by Ψ(Z) := Vkl : Rd → R. It follows that

HΛ =
∑
k∈Λ

H0
k +

∑
Z⊂Λ
|Z|=2

Ψ(Z),

where
H0

k = ∥pk∥2

2mk
+ νk∥qk∥2

2 .

Finally, we assume the following compatibility condition between the grid Γ
and the interaction part of the Hamiltonian:
Assumption 3: The following constant is finite:

∥Ψ∥ := sup
k,l∈Γ

Ckl

F (d(k, l)) < ∞,

where the Ckl are the constants from Assumption (iii). In particular, for all
k, l ∈ Γ

Ckl ≤ ∥Ψ∥F (d(k, l)).

3 Lieb-Robinson bounds

3.1 Estimates on time-evolved Poisson bracket

Building on the methods developed in [6], we generalize them to our frame-
work. Let X, Y ⊂ Λ be finite subsets, and f0 ∈ C1

b (ΩX) and g0 ∈ C1
b (ΩY ).

In order to compare f0 and g0, in accordance with the structure of the com-
mutative resolvent algebra (see Section 4.1) we define πX,Λ : ΩΛ → ΩX and
πY,Λ : ΩΛ → ΩY to be the orthogonal projection from ΩΛ onto ΩX and ΩY ,
respectively (recall that all these spaces are finite-dimensional). We then
write f := f0 ◦ πX,Λ and g := g0 ◦ πY,Λ. Their C1-norms are defined as:

∥f∥C1 := ∥f∥∞ + ∥∇f∥2,∞, ∥g∥C1 := ∥g∥∞ + ∥∇g∥2,∞,

the notation ∥∇f∥2,∞ stands for sup(p,q)∈ΩΛ
∥∇f(p, q)∥2 with ∥ · ∥2 the

standard Euclidean norm on ΩΛ induced by ℓ2(Γ,R2d), and similarly for
∥∇g∥2,∞. In other words, we have for (p, q) ∈ ΩΛ that

∥(p, q)∥2 =
√∑

j∈Λ
∥pj∥2 + ∥qj∥2 =

√√√√√∑
j∈Λ

d∑
i=1

p2
j,i + q2

j,i.
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For fixed lattice points j ∈ Λ with (pj , qj) ∈ R2d, we simply write

∥(pj , qj)∥ =

√√√√√ d∑
j=1

p2
j,i + q2

j,i,

without explicitly indicating the subscript 2. The Poisson bracket of the
time-evolved observable αt(f) := f ◦ Φt with g is given by

{αt(f), g} =
∑
j∈Λ

d∑
i=1

(
∂αt(f)
∂qj,i

∂g

∂pj,i
− ∂αt(f)

∂pj,i

∂g

∂qj,i

)
.

We will bound this quantity by bounding on the one hand the derivatives
of f and g, and on the other hand the dependence of the time evolution on
the initial conditions. To aid with notation, for all k ∈ Λ let us define the
projections

πpos(p, q) := q ∈ Ωpos
Λ

∼= R|Λ|d πpos,k(p, q) := qk ∈ Ωpos
{k}

∼= Rd

πmom(p, q) := p ∈ Ωmom
Λ

∼= R|Λ|d πmom,k(p, q) := pk ∈ Ωmom
{k}

∼= Rd.

where (p, q) ∈ Ωmom
Λ ⊕ Ωpos

Λ = ΩΛ. We will write π∗
pos : Ωpos

Λ → ΩΛ etc.
for the conjugate maps, i.e. the associated inclusion. We then define for
all functions h ∈ C1

b (ΩΛ, V ) (where V is a finite dimensional inner product
space) the generalized partial derivatives

∂h

∂q
(p, q) := Dh(p, q) ◦ π∗

pos : Ωpos
Λ → V

∂h

∂p
(p, q) := Dh(p, q) ◦ π∗

mom : Ωmom
Λ → V

and also for all k ∈ Λ the site-specific derivatives

∂h

∂qk
(p, q) := Dh(p, q) ◦ π∗

pos,k : Ωpos
{k} → V

∂h

∂pk
(p, q) := Dh(p, q) ◦ π∗

mom,k : Ωmom
{k} → V

We note that if V = R then(
∂h

∂q
(p, q)

)T

= πpos(Dh(p, q))T = πpos∇h(p, q)

and similarly for ∂h
∂p (p, q), ∂h

∂qk
(p, q), and ∂h

∂pk
(p, q) for all k ∈ Λ. We can then

succinctly write

{αt(f), g} =
(

∂αt(f)
∂q

)T

·
(

∂g

∂p

)T

−
(

∂αt(f)
∂p

)T

·
(

∂g

∂q

)T
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where the inner product and transpose are taken pointwise.
Since αt(f) = f ◦ Φt, we have

D(αt(f))(p, q) = D(f)(Φt(p, q)) ◦ DΦt(p, q)

= ∂f

∂q
(Φt(p, q)) ◦ πpos ◦ DΦt(p, q)

+ ∂f

∂p
(Φt(p, q)) ◦ πmom ◦ DΦt(p, q)

This leads us to define the functions

q(t) := πpos ◦ Φt : ΩΛ → Ωpos
Λ

p(t) := πmom ◦ Φt : ΩΛ → Ωmom
Λ

qk(t) := πpos,k ◦ Φt : ΩΛ → Ωpos
{k}

pk(t) := πmom,k ◦ Φt : ΩΛ → Ωmom
{k}

mapping the initial conditions to various quantities after a time evolution
by time t. Since projections are linear, we calculate

∂q(t)
∂q

(p, q) = πpos ◦ DΦt(p, q) ◦ π∗
pos

∂q(t)
∂p

(p, q) := πpos ◦ DΦt(p, q) ◦ π∗
mom

and similarly for ∂p(t)
∂q (p, q) and ∂p(t)

∂p (p, q). We therefore see that

∂αt(f)
∂q

(p, q) = ∂f

∂q
(Φt(p, q)) ◦ ∂q(t)

∂q
(p, q) + ∂f

∂p
(Φt(p, q)) ◦ ∂p(t)

∂q
(p, q)

∂αt(f)
∂p

(p, q) = ∂f

∂q
(Φt(p, q)) ◦ ∂q(t)

∂p
(p, q) + ∂f

∂p
(Φt(p, q)) ◦ ∂p(t)

∂p
(p, q)

Summarizing and using the fact that (φ ◦ A)T · v = φT · Av for a linear
functional φ : W → R and linear map A : V → W , we obtain

{αt(f), g}(p, q) =
(

∂f

∂q
(Φt(p, q))

)T

· ∂q(t)
∂q

(p, q)
(

∂g

∂p
(p, q)

)T

+
(

∂f

∂p
(Φt(p, q))

)T

· ∂p(t)
∂q

(p, q)
(

∂g

∂p
(p, q)

)T

−
(

∂f

∂q
(Φt(p, q))

)T

· ∂q(t)
∂p

(p, q)
(

∂g

∂q
(p, q)

)T

−
(

∂f

∂p
(Φt(p, q))

)T

· ∂p(t)
∂p

(p, q)
(

∂g

∂q
(p, q)

)T

Recall that f only depends on the grid sites in X and g on the grid sites in
Y , by which we mean that f = f0 ◦ πX,Λ and g = g0 ◦ πY,Λ. This means that
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∂f
∂qj

= ∂f
∂pj

= 0 for j ∈ Λ \ X, as well as ∂g
∂qj

= ∂g
∂pj

= 0 for j ∈ Λ \ Y . We
therefore see that

{αt(f), g}(p, q) =
∑
j∈X

∑
k∈Y

(
∂f

∂qj
(Φt(p, q))

)T

· ∂qj(t)
∂qk

(p, q)
(

∂g

∂pk
(p, q)

)T

+
(

∂f

∂pj
(Φt(p, q))

)T

· ∂pj(t)
∂qk

(p, q)
(

∂g

∂pk
(p, q)

)T

−
(

∂f

∂qj
(Φt(p, q))

)T

· ∂qj(t)
∂pk

(p, q)
(

∂g

∂qk
(p, q)

)T

−
(

∂f

∂pj
(Φt(p, q))

)T

· ∂pj(t)
∂pk

(p, q)
(

∂g

∂qk
(p, q)

)T

Because ( ∂f
∂qj

(p, q))T corresponds to projecting ∇f(p, q) onto Ωpos
{j}, we

have that ∥ ∂f
∂qj

(p, q)∥2 ≤ ∥∇f(p, q)∥2 for all j ∈ Λ. Using that for all (p, q) ∈
ΩΛ we have ∥∇f(Φt(p, q))∥2 ≤ ∥∇f∥2,∞ and ∥∇g(p, q)∥2 ≤ ∥∇g∥2,∞ we
then estimate

∥{αt(f), g}∥∞

≤ ∥f∥C1∥g∥C1
∑
j∈X
k∈Y

(∥∥∥∥∂qj(t)
∂qk

∥∥∥∥
op,∞

+
∥∥∥∥∂pj(t)

∂qk

∥∥∥∥
op,∞

+
∥∥∥∥∂qj(t)

∂pk

∥∥∥∥
op,∞

+
∥∥∥∥∂pj(t)

∂pk

∥∥∥∥
op,∞

)

≤ 4∥f∥C1∥g∥C1 sup
j∈X
k∈Y

{∥∥∥∥∂qj(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂qj(t)
∂pk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂pk

∥∥∥∥
op,∞

}
,

where for a function F : ΩΛ → L(V, W ) with values in the set of linear
operators between two vector spaces V and W we write

∥F∥op,∞ = sup
(p,q)∈ΩΛ

∥F (p, q)∥op

Remark 1: Note that whenever X and Y are disjoint, their are no diagonal
terms. This will play a role in the next section.

Variational methods

Now that we have separated the dependence on the functions f and g, we
focus on bounding the derivatives of the time evolution with respect to
the initial data. In order to clean up notation, we pick an orbit of the
time evolution (P (t), Q(t)) := Φt(P (0), Q(0)) for some fixed initial point
(P (0), Q(0)) ∈ ΩΛ (we write uppercase letters to distinguish for example
Q(t), which for all t ∈ R is a vector in Ωpos

Λ , from q(t), which for all t ∈ R
is a function ΩΛ → Ωpos

Λ describing how the position at time t depends on
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the initial value; in other words, Q(t) = q(t)(P (0), Q(0))). We write the
following for the four Jacobian matrices

Xkj(t) := ∂qk(t)
∂qj

(P (0), Q(0)); Zkj(t) := ∂qk(t)
∂pj

(P (0), Q(0));

Ykj(t) := ∂pk(t)
∂qj

(P (0), Q(0)); Wkj(t) := ∂pk(t)
∂pj

(P (0), Q(0));

where we remind the reader that for each k, j ∈ Λ these are each a d × d
matrix.

Recall the Hamiltonian of the system:

HΛ(p, q) =
∑
k∈Λ

(
∥pk∥2

2mk
+ νk

2 ∥qk∥2
)

+ 1
2
∑

k,l∈Λ
Vkl(qk − ql),

where the potentials Vkl satisfy Assumption 1. The evolution Φt(p(0), q(0)) :=
(q(t), p(t)) is given by solving Hamilton’s equations, which are typically non-
linear due to the interaction potentials Vkl. The linearized dynamics come
from differentiating the nonlinear flow with respect to initial conditions. To
analyze these, we consider the Hessian matrix of the potential energy eval-
uated along the trajectory (q(t), p(t)). So for h : V → R differentiable such
that ∇h is differentiable, we write

H(h)(v) := D(∇h)(v) ∈ L(V, V ).

for the Hessian at the point v ∈ V . We also want to formulate mixed
second partial derivatives with respect to the vector variables qk, so for
U : Ωpos

Λ → R we define

∂2U

∂qk∂qj
(q) := D

(∂U

∂qj

)T
 (q) ◦ π∗

pos,k ∈ L(Ωpos
{k}, Ωpos

{j}).

However, because(
∂U

∂qj

)T

(q) = (DU(q) ◦ π∗
pos,j)T = πpos,j(DU(q))T

we have
∂2U

∂qk∂qj
(q) = πpos,j ◦ H(U)(q) ◦ π∗

pos,k

Lemma 2: Let Q(t) be a path in Ωpos
Λ . The Hessian matrix of the potential

energy part of the Hamiltonian

B(t) := [Bkj(t)]j,k∈Λ , where Bkj(t) := ∂2U

∂qk∂qj
(Q(t))
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with
U(q) :=

∑
k∈Λ

νk

2 ∥qk∥2 + 1
2
∑

k,l∈Λ
Vkl(qk − ql)

has the following block structure
Bjj(t) = νj +

∑
l∈Λ

H(Vjl)(Qj(t) − Ql(t))

Bkj(t) = −H(Vkj)(Qk(t) − Qj(t)) (j ̸= k).
In particular, we have Bkj(t) = Bjk(t) = Bjk(t)T .

Proof. We first calculate the first partial derivatives of U : the total deriva-
tive equals

DU(q)(v) =
∑
k∈Λ

νkqk · πpos,kv

+ 1
2
∑

k,l∈Λ
D(Vkl)(qk − ql) ◦ D(πpos,k − πpos,l)(v)

=
∑
k∈Λ

νkqk · πpos,kv + 1
2
∑

k,l∈Λ
D(Vkl)(qk − ql)(πpos,kv − πpos,lv)

so that

DU(q) ◦ π∗
pos,j(v) = νjqj · v + 1

2
∑

k,l∈Λ
(δk,j − δl,j)D(Vkl)(qk − ql)(v)

meaning that(
∂U

∂qj
(q)
)T

= νjqj + 1
2
∑
l∈Λ

∇Vjl(qj − ql) − ∇Vlj(ql − qj)

= νjqj +
∑
l∈Λ

∇Vjl(qj − ql)

Calculating the full derivative of this, we see that

D

(∂U

∂qj

)T
 (q) = νjπpos,j +

∑
l∈Λ

D(∇Vjl)(qj − ql) ◦ D(πpos,j − πpos,l)

= νjπpos,j +
∑
l∈Λ

H(Vjl)(qj − ql) ◦ (πpos,j − πpos,l).

Diagonal blocks: For j = k, we compute

Bjj(t) = ∂2U

∂q2
j

(Q(t))

= D

(∂U

∂qj

)T
 (Q(t)) ◦ π∗

pos,j

= νjId +
∑
l∈Λ

H(Vjl)(Qj(t) − Ql(t))

12



where in the last step we used that πpos,l ◦ π∗
pos,j = δl,jId and Vjj = 0.

Off-diagonal blocks: For j ̸= k, we calculate

Bkj(t) = ∂2U

∂qk∂qj
(Q(t))

= D

(∂U

∂qj

)T
 (Q(t)) ◦ π∗

pos,k

= −H(Vjk)(Qj(t) − Qk(t))
= −H(Vkj)(Qk(t) − Qj(t))

where in the last step we used that Vjk(x) = Vkj(−x), so ∇Vjk(x) =
−∇Vkj(−x) and H(Vjk)(x) = H(Vkj)(−x). This also shows that Bkj(t) =
Bjk(t), and since the Hessian of a smooth function is symmetric, we indeed
see that Bkj(t) = Bjk(t)T , as the identity ∂2U

∂qk∂qj
(q) = πpos,j ◦H(U)(q)◦π∗

pos,k
suggests.

Next, we again consider the Jacobian blocks describing the sensitivity
of the flow with respect to initial conditions. The position and momen-
tum satisfy the Hamiltonian differential equations, and as we show in the
next Lemma, because everything is sufficiently smooth, we can permute the
time derivative and the derivative in the initial data to arrive at differential
equations for the derivatives of position and momentum with respect to the
initial data.
Lemma 3: Let (P (t), Q(t)) be solutions of the Hamiltonian system

H(q, p) =
∑
j∈Λ

1
2mj

∥pj∥2 +
∑
j∈Λ

νj

2 ∥qj∥2 + 1
2
∑

j,k∈Λ
Vjk(qj − qk).

For each k, j ∈ Λ we define

Xkj(t) := ∂qk(t)
∂qj

(P (0), Q(0)); Zkj(t) := ∂qk(t)
∂pj

(P (0), Q(0));

Ykj(t) := ∂pk(t)
∂qj

(P (0), Q(0)); Wkj(t) := ∂pk(t)
∂pj

(P (0), Q(0));

Then the variational system satisfies
Ẋkj(t) = 1

mk
Ykj(t),

Ẏkj(t) = −
∑

l∈Λ Blk(t)Xlj(t),
Żkj(t) = 1

mk
Wkj(t),

Ẇkj(t) = −
∑

l∈Λ Blk(t)Zlj(t),

with


Xkj(0) = δkjId

Ykj(0) = 0
Zkj(0) = 0
Wkj(0) = δkjId

where Bkj(t) is the Hessian of the potential part of H with respect to posi-
tions k and j, i.e.

Bkj(t) = ∂2U

∂qk∂qj
(Q(t)),
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whose matrix elements are explicitly given by the formulas obtained from
Lemma 2.

Proof. The initial values are easy to check because Φ0 is the identity, so

∂qk(0)
∂qj

= πpos,k ◦ D(Φ0) ◦ π∗
pos,j = πpos,k ◦ π∗

pos,j = δk,jId

and similar for the rest.
To verify the system of differential equations, we define Φ : R×ΩΛ → ΩΛ

by Φ(t, p, q) := Φt(p, q). We are looking to express

dXk,j

dt
(t) = d

dt

(
∂qk(·)

∂qj
(P (0), Q(0))

)
(t)

= d

dt

(
∂πpos,k ◦ Φ

∂qj
(·, P (0), Q(0))

)
(t)

= ∂

∂t

(
∂πpos,k ◦ Φ

∂qj

)
(t, P (0), Q(0))

(here we have used the notation ∂qk(·)
∂qj

(P (0), Q(0)) for the map t 7→ ∂qk(t)
∂qj

(P (0), Q(0))
and similarly in the second line). Since

∂πpos,k ◦ Φ
∂qj

: R × ΩΛ → L(Ωpos
{j}, Ωpos

{k})

is linear-operator valued function in finite dimensions, we can consider the
partial derivative in a strong sense; it therefore suffices to evaluate the partial
derivative of ∂πpos,k◦Φ

∂qj,i
for all i = 1, . . . , d, which are ∂πpos,k◦Φ

∂qj
applied to the

i’th unit vector in Ωpos
{j}.

We note that ∂H
∂pk,i

: ΩΛ → R and ∂H
∂qk,i

: ΩΛ → R are smooth for all k ∈ Λ
and i = 1, . . . , d, so Φ is the solution to an ordinary differential equation
whose time derivative at time t is a smooth function of the value at time
t; by standard results, this means that Φ is a smooth map (see e.g. [18,
Sec 32.4]). Since this in particular means that it is C2, we know that its
derivatives commute, and therefore

∂2πpos,k ◦ Φ
∂t∂qj,i

(t, P (0), Q(0)) = ∂2πpos,k ◦ Φ
∂qj,i∂t

(t, P (0), Q(0))

= ∂

∂qj,i

(
∂πpos,k ◦ Φ

∂t
(t, ·, ·)

)
(P (0), Q(0))

(see e.g. [19, Prop. C.6]). By Hamilton’s equations, we know that

∂Qk,i

∂t
(t) = ∂H

∂pk,i
(P (t), Q(t)) ∂Pk,i

∂t
(t) = − ∂H

∂qk,i
(P (t), Q(t))
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for all trajectories (P (t), Q(t)) = Φt(P (0), Q(0)), k ∈ Λ and i = 1, . . . d. We
can reformulate this as

∂πpos,k ◦ Φ
∂t

(t, p, q) = d(qk(·)(p, q))
dt

(t) =
(

∂H

∂pk
(Φt(p, q))

)T

meaning that

∂2πpos,k ◦ Φ
∂t∂qj,i

(t, P (0), Q(0)) = ∂

∂qj,i

((
∂H

∂pk

)T

◦ Φt

)
(P (0), Q(0)).

So we conclude that
dXkj

dt
(t) = ∂

∂qj

((
∂H

∂pk

)T

◦ Φt

)
(P (0), Q(0))

=
∑
l∈Λ

∂2H

∂ql∂pk
(P (t), Q(t)) ◦ Xlj(t) + ∂2H

∂pl∂pk
(P (t), Q(t)) ◦ Ylj(t)

By similar calculations we see that

dYkj

dt
(t) = −

∑
l∈Λ

∂2H

∂ql∂qk
(P (t), Q(t)) ◦ Xlj(t) + ∂2H

∂pl∂qk
(P (t), Q(t)) ◦ Ylj(t)

dZkj

dt
(t) =

∑
l∈Λ

∂2H

∂ql∂pk
(P (t), Q(t)) ◦ Zlj(t) + ∂2H

∂pl∂pk
(P (t), Q(t)) ◦ Wlj(t)

dWkj

dt
(t) = −

∑
l∈Λ

∂2H

∂ql∂qk
(P (t), Q(t)) ◦ Zlj(t) + ∂2H

∂pl∂qk
(P (t), Q(t)) ◦ Wlj(t)

Since our Hamiltonian doesn’t contain any mixed position and momentum
terms, the mixed position-momentum derivatives vanish. One easily calcu-
lates that(

∂∥pk∥2

∂pk

)T

= 2πmom,k, so ∂2∥pk∥2

∂pl∂pk
= 2πmom,k ◦ π∗

mom,l.

We can therefore reduce the system of differential equations above to
dXkj

dt
(t) = 1

mk
Ykj(t)

dYkj

dt
(t) = −

∑
l∈Λ

∂2U

∂ql∂qk
(P (t), Q(t)) ◦ Xlj(t)

dZkj

dt
(t) = 1

mk
Wkj(t)

dWkj

dt
(t) = −

∑
l∈Λ

∂2U

∂ql∂qk
(P (t), Q(t)) ◦ Zlj(t)

where U(p, q) = H(p, q) −
∑

k∈Λ ∥pk∥2 is the potential function. By Lemma
2 the result now follows.
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Lemma 4: The solutions to the ODE’s defined in Lemma 3 are all uniquely
defined.

Proof. Fix Λ ⋐ Γ finite. For each pair j, k ∈ Λ consider the variational
blocks

Xkj(t), Ykj(t), Zkj(t), Wkj(t) ∈ Rd×d

satisfying the system of ODEs as described in Lemma 3.
By Assumption (1), and the fact that the flow Φ(t) is continuous, the

matrix coefficients Bkj(t) are continuous in t. In particular,

∥Bkj(t)∥∞ ≤


νj +

∑
l∈Λ

∥H(Vjl)∥op,∞, j = k,

∥H(Vkj)∥op,∞, j ̸= k,

and the right-hand sides are finite by the decay assumptions on partial
derivatives of Vkj for all k, j ∈ Λ. Hence the map t 7→ Bkj(t) is bounded
and continuous.

We now stack the unknowns into

Tkj(t) =
(
Xkj(t), Ykj(t), Zkj(t), Wkj(t)

)⊤
.

Then

Ṫkj(t) = Akj(t)Tkj(t), Akj(t) =


0 M−1

kj 0 0
−Bkj(t) 0 0 0

0 0 0 M−1
kj

0 0 −Bkj(t) 0

 ,

where M−1
kj = δkjdiag(m−1

j Id). By the observations above, Akj(t) is contin-
uous and bounded. By standard results, the linear non-autonomous ODE

Ṫkj = Akj(t)Tkj

admits a unique global solution Tkj(t). Hence, Xkj(t), Ykj(t), Zkj(t), Wkj(t)
are unique for all t ∈ R. Since this holds for any pair k, j, we are done.

3.2 Second-order differential equations and integral formulas

We study the evolution of the Jacobian block matrices defined above.

Consider Xkj(t). From the equations of motion, we know that:

Ẋkj(t) = 1
mk

Ykj(t),
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where Ykj(t) := ∂pk(t)
∂qj

(P (0), Q(0)) ∈ Rd×d. Differentiating both sides with
respect to time gives:

Ẍkj(t) = d

dt
Ẋkj(t) = 1

mk
Ẏkj(t).

From the linearized equation for Ẏkj(t), we have:

Ẏkj(t) = −
∑
l∈Λ

Bkl(t)Xlj(t),

where Bkl(t) ∈ Rd×d is defined as in Lemma 2. Substituting into the second
derivative of Xkl(t), we obtain the second-order evolution equation:

Ẍkj(t) = − 1
mk

∑
l∈Λ

Bkl(t)Xlj(t).

This equation holds with the initial conditions:

Xkj(0) = δkjId, Ẋkj(0) = 1
mk

Ykj(0) = 0.

Since the initial velocity is zero, we apply Duhamel’s principle to solve the
second-order system:

Xkj(t) = δkjId −
∫ t

0
(t − s) · 1

mk

∑
l∈Λ

Bkj(s)Xlj(s) ds.

To verify this formula, we compute the time derivative:

Ẋkl(t) = − d

dt

∫ t

0
(t − s) · 1

mk

∑
j∈Λ

Bkj(s)Xjl(s) ds


= −

∫ t

0

∂

∂t
(t − s) · 1

mk

∑
j∈Λ

Bkj(s)Xjl(s) ds

= −
∫ t

0

1
mk

∑
j∈Λ

Bkj(s)Xjl(s) ds

where we used the differentiation rule
d

dt

∫ t

0
f(t, s) ds = f(t, t) +

∫ t

0

∂f

∂t
(t, s) ds.

Differentiating once more gives:

Ẍkl(t) = − d

dt

∫ t

0

1
mk

∑
j∈Λ

Bkj(s)Xjl(s) ds


= − 1

mk

∑
j∈Λ

Bkj(t)Xjl(t),
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which confirms the second-order equation.

Analogous computations show that Ykj(t), Zkj(t) and Wkj(t) satisfy expres-
sions of similar type. We omit the computations for brevity. In summary,
the full system of evolution equations can be written as:

Xkj(t) = δkjId −
∫ t

0
(t − s) 1

mk

∑
l∈Λ

Bkl(s)Xlj(s) ds, Xkj(0) = δkjId, Ẋkj(0) = 0;

Ykj(t) = −
∫ t

0

∑
l∈Λ

Bkj(s)Xjl(s) ds, Ykj(0) = 0, Ẏkj(0) = −Bkj(0);

Zkj(t) = t

mk
δkjId −

∫ t

0
(t − s) 1

mk

∑
l∈Λ

Bkl(s)Zlj(s) ds, Zkj(0) = 0, Żkj(0) = 1
mk

δkjId;

Wkl(t) = δkjId −
∫ t

0

∑
l∈Λ

Bkl(s)Zlj(s) ds, Wkj(0) = δkjId, Ẇkj(0) = 0.

3.3 Estimates

We now derive operator norm bounds for the entries of the matrix Bkj(t),
using the assumed decay of the interaction potentials, cf. Assumption 1.

In particular, given (iii) the potentials Vkj : Rd → R satisfy the following
exponential decay condition on their second derivatives: there exist con-
stants CV and Ckj for all j, k ∈ Γ, such that

∥H(Vkj)∥op,∞ ≤ dCkjC2
V ,

where Ckj ≤ ∥Ψ∥F (d(k, j)), with F : R≥0 → (0, 1] a suitably decaying func-
tion, see Section 1 for the precise definition. Therefore,

∥H(Vkj)∥op,∞ ≤ dC2
V ∥Ψ∥F (d(k, j)).

Recall from Lemma 2 that Bkj(t) is defined via the second derivatives of the
interaction potentials

Bkj(t) =


νj +

∑
l∈Λ

H(Vlj)(Qj(t) − Ql(t)), j = k,

−H(Vkj)(Qk(t) − Qj(t)), j ̸= k.

We thus obtain

∥Bkj(t)∥∞ ≤


νj +

∑
l∈Λ

∥H(Vjl)(Qj(t) − Ql(t))∥op ≤ νj +
∑
l∈Λ

dC2
V ∥Ψ∥F (d(j, l)), j = k,

dC2
V ∥Ψ∥F (d(k, j)), j ̸= k.
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3.3.1 Dyson expansions

We derive Dyson expansions for each Jacobian matrix. We give the proofs
for Xkj(t) and Ykj(t) explicitly, and leave the analogous computations for
Zkj(t) and Wkj(t) to the reader. Given the similarities between Xkj(t) and
Zkj(t), as well as between Ykj(t) and Wkj(t), their computations are nearly
identical.
Proposition 5: Let t ∈ R. For all j ̸= k it holds

∥Xjk(t)∥op ≤ F (d(j, k))(cosh(
√

C0t) − 1),

∥Yjk(t)∥op ≤ F (d(j, k))
√

C0 sinh(
√

C0|t|),

∥Zjk(t)∥op ≤ F (d(j, k))sinh(
√

C0|t|)√
C0

,

∥Wjk(t)∥op ≤ F (d(j, k))(cosh(
√

C0t) − 1)

(4)

In particular, because the right-hand side does not depend on the choice
P (0), Q(0) in the definition of Xj,k(t), Yj,k(t), Zj,k(t) and Wj,k(t), we have

∥∥∥∥∂qj(t)
∂qk

∥∥∥∥
op,∞

≤ F (d(j, k))(cosh(
√

C0t) − 1),∥∥∥∥∂pj(t)
∂qk

∥∥∥∥
op,∞

≤ F (d(j, k))
√

C0 sinh(
√

C0|t|),∥∥∥∥∂qj(t)
∂pk

∥∥∥∥
op,∞

≤ F (d(j, k))sinh(
√

C0|t|)√
C0

,∥∥∥∥∂pj(t)
∂pk

∥∥∥∥
op,∞

≤ F (d(j, k))(cosh(
√

C0t) − 1)

(5)

These decay estimates show that each matrix entry inherits the expo-
nential decay in space via F (d(j, k)), with explicit controlled time growth.
To prove the proposition, we first deduce the Dyson expansion for X(t),
stated in the following lemma.
Lemma 6: For n ≥ 0 and all j, k ∈ Λ, let

X
(n+1)
kj (t) := −

∫ t

0
(t − s) 1

mk

∑
l∈Λ

Bkl(s)X(n)
lj (s) ds,

and X
(0)
kj (t) = δkjId. Then, whenever j ̸= k,

∥X
(n)
kj (t)∥op ≤ (C0t2)n

(2n)! F (d(k, j)),

where

C0 := ∥m−1∥∞ max {(∥ν∥∞ + dC2
V ∥Ψ∥∥F∥), dC2

V ∥Ψ∥CF , 1}.
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Here, ∥m−1∥∞ = supj |m−1
j | and ∥ν∥∞ = supj |νj |, and the constants CF

and ∥F∥ are the ones defined in Assumption 1. In particular, whenever
k ̸= j

∞∑
n=0

∥X
(n)
kj (t)∥op ≤ F (d(k, j))(cosh(

√
C0t) − 1),

and Xkj(t) = ∑∞
n=0 X

(n)
kj (t).

Proof. The first assertion is proved by induction.

Base case n = 0:
By definition,

X
(0)
kj (t) = δkjId.

and F (d(k, j)) ≥ 0. In particular, when k ̸= j, we obtain 0 = ∥X
(0)
kj (t)∥ ≤

F (d(k, j)).

Inductive step:
Assume the claim holds for some n ≥ 0. Then,

∥X
(n+1)
kj (t)∥op ≤

∫ |t|

0
(|t| − s)∥m−1∥∞

∑
l∈Λ

∥Bkl(s)∥op · ∥X
(n)
lj (s)∥opds.

Split the sum over l into diagonal and off-diagonal parts:∑
l∈Λ

∥Bkl(s)∥op∥X
(n)
lj (s)∥op = ∥Bkk(s)∥op∥X

(n)
kj (s)∥op+

∑
l ̸=k

∥Bkl(s)∥op∥X
(n)
lj (s)∥op.

Recall that the matrix elements of Bkk(t) satisfy

∥Bkk(t)∥op ≤ ∥ν∥∞ + dC2
V ∥Ψ∥

∑
m∈Λ

F (d(k, m)),

and for k ̸= l
∥Bkl(t)∥op ≤ dC2

V ∥Ψ∥F (d(k, l)),
where F is the decay function (with F (0) = 1). We can absorb the diagonal
contribution into the decay estimates and obtain∑
l∈Λ

∥Bkl(s)∥op∥X
(n)
lj (s)∥op ≤∥ν∥∞ + dC2

V ∥Ψ∥
∑

m∈Λ
F (d(k, m))

 (C0s2)n

(2n)! F (d(k, j)) +
∑
l ̸=k

dC2
V ∥Ψ∥F (d(k, l))(C0s2)n

(2n)! F (d(l, j)),

where we have used the induction hypothesis. Applying the exponential de-
cay properties and the convolution bound, there exist constants CF , ∥F∥ >
0, i.e. such that

sup
k

∑
m∈Λ

F (d(k, m)) ≤ ∥F∥; and
∑
l∈Λ

F (d(k, l))F (d(l, j)) ≤ CF F (d(k, j)).
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Combining these estimates yields,∑
l∈Λ

∥Bkl(s)∥op∥X
(n)
lj (s)∥op ≤

(∥ν∥∞ + dC2
V ∥Ψ∥∥F∥)(C0s2)n

(2n)! F (d(k, j)) + dC2
V ∥Ψ∥CF

(C0s2)n

(2n)! F (d(k, j))).

Since

C0 = ∥m−1∥∞ max {(∥ν∥∞ + dC2
V ∥Ψ∥∥F∥), dC2

V ∥Ψ∥CF , 1},

it follows that

∥m−1∥∞
∑
l∈Λ

∥Bkl(s)∥op∥X
(n)
lj (s)∥op ≤ C0F (d(k, j))(C0s2)n

(2n)! .

Hence,

∥X
(n+1)
kj (t)∥op ≤ F (d(k, j))Cn+1

0
(2n)!

∫ |t|

0
(|t| − s)s2nds.

We then evaluate the integral using the substitution u = s/|t| and the prop-
erties of a Beta integral,∫ |t|

0
(|t| − s)s2nds = |t|2n+2

∫ 1

0
(1 − u)u2ndu = |t|2n+2

(2n + 1)(2n + 2) .

Therefore,

∥X
(n+1)
kj (t)∥op ≤ F (d(k, j)) Cn+1

0 |t|2n+2

(2n)!(2n + 1)(2n + 2)

which is equal to

∥X
(n+1)
kj (t)∥op ≤ F (d(k, j)) (C0t2)n+1

(2(n + 1))! ,

By the principle of induction,

∥X
(n)
kj (t)∥op ≤ F (d(k, j))(C0t2)n

(2n)! ,

for all n ≥ 0. Finally, for k ̸= j we sum over n ≥ 1:
∞∑

n=0

∥∥∥X(n)
kj (t)

∥∥∥
op

=
∞∑

n=1

∥∥∥X(n)
kj (t)

∥∥∥
op

≤ F (d(k, j))
∞∑

n=1

(C0t2)n

(2n)! = F (d(k, j))(cosh(
√

C0t)−1).

This proves that the Dyson series defined by
∞∑

n=0
X

(n)
kj (t), where X

(0)
kj (t) = δkjId,

21



converges absolutely. A direct computation shows that this series satisfies
the second order differential equation for Xkj . On account of Lemma 4, we
conclude that

Xkj(t) =
∞∑

n=0
X

(n)
kj (t), where X

(0)
kj (t) = δkjId.

We now derive the Dyson expansion for Ykj(t).
Lemma 7: For n ≥ 1 and all k, j ∈ Λ, define

Y
(n)

kj (t) = −
∫ t

0

∑
l∈Λ

Bkl(s)X(n−1)
lj (s) ds,

and Y
(0)

kl (t) = 0. If j ̸= k, it holds

∥Y
(n)

kj (t)∥op ≤ Cn
0 |t|2n−1

(2n − 1)! F (d(k, j)),

and ∥Y
(0)

kj (t)∥op = 0. Here, the constant C0 is the one defined by Lemma 6.
In particular, if k ̸= j

∞∑
n=0

∥Y
(n)

kj (t)∥op ≤ F (d(k, j))
√

C0 sinh(
√

C0|t|)

and
Ykj(t) =

∞∑
n=0

Y
(n)

kj .(t)

Proof. We proceed by induction on n.

Base case (n = 1):
From the definition,

Y
(1)

kj (t) = −
∫ t

0

∑
l∈Λ

Bkl(s)X(0)
lj (s) ds.

Since X
(0)
lj (s) = δljId, we have

∥Y
(1)

kj (t)∥op ≤
∫ |t|

0
∥Bkj(s)∥op ds ≤ C0F (d(k, j))

∫ |t|

0
ds = |t|C0F (d(k, j)),

where the final last inequality follows from the estimates on Bkj for k ̸= j.
Inductive step:
Assume that

∥Y
(n)

kj (t)∥op ≤ Cn
0 t2n−1

(2n − 1)!F (d(k, j)),
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holds for some n ≥ 1. We want to prove it for n + 1. Using the recursive
definition:

Y
(n+1)

kj (t) = −
∫ t

0

∑
l∈Λ

Bkl(s)X(n)
lj (s) ds,

we estimate the matrix elements as follows:

∥Y
(n+1)

kj (t)∥op ≤
∫ |t|

0

∑
l∈Λ

∥Bkl(s)∥op · ∥X
(n)
lj (s)∥op ds.

Using the bounds on X
(n)
lj (s) and Bkl(s) (cf. Lemma 6), we obtain

∑
l∈Λ

∥Bkl(s)∥op · ∥X
(n)
lk (s)∥op ≤ Cn+1

0 s2n

(2n)! F (d(k, j)).

Then,

∥Y
(n+1)

kj (t)∥op ≤ F (d(k, j)) · Cn+1
0

(2n)!

∫ |t|

0
s2n ds = F (d(k, j)) · Cn+1

0 |t|2n+1

(2n)!(2n + 1) .

As a result,

∥Y
(n+1)

kj (t)∥op ≤ F (d(k, j)) · Cn+1
0 |t|2n+1

(2n + 1)! .

This completes the induction step. Thus, for all n ≥ 1 and k ̸= j,

∥Y
(n)

kj (t)∥op ≤ Cn
0 |t|2n−1

(2n − 1)! F (d(k, j)).

Summing this series for j ̸= k gives
∞∑

n=0
∥Y

(n)
jk (t)∥op ≤

∞∑
n=1

Cn
0 |t|2n−1

(2n − 1)! F (d(k, j)) = F (d(k, j))
√

C0 sinh
√

C0|t|.

This shows that the Dyson series

Ykj(t) =
∞∑

n=0
Y

(n)
kj (t), with Y

(0)
kj (t) = 0,

converges absolutely and satisfies the relevant integral equation. By unique-
ness (cf. Lemma 4), this series is the solution.

Theorem 8: Assume all the conditions in Section 2.1 are satisfied for the
discrete set Γ. Let HΛ be defined by (3). For X, Y ⋐ Γ be such that they
are spatially separated, i.e. dist(X, Y ) > 0. Take any finite set Λ ⋐ Γ with
X ∪ Y ⊂ Λ. Let f ∈ C1

b (ΩX) and g ∈ C1
b (ΩY ). Then, there exists a positive

constant C0 independent of f and g, such that for all t ∈ R

∥{αt
Λ(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1

√
C0 sinh

√
C0|t|D(X, Y ), (6)
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where
D(X, Y ) :=

∑
x∈X

∑
y∈Y

F (d(x, y)).

In particular, for all t ∈ R

∥{αt
Λ(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1

√
C0e(

√
C0|t|−1)D(X, Y ), (7)

Proof. Let us first assume t > 0. We already know from the computations
in Section 3.1

∥{αt(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1 sup
j∈X
k∈Y

{∥∥∥∥∂qj(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂qj(t)
∂pk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂pk

∥∥∥∥
op,∞

}
,

Moreover, for t ∈ R

max
{∥∥∥∥∂qj(t)

∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂qj(t)
∂pk

∥∥∥∥
op,∞

,

∥∥∥∥∂pj(t)
∂pk

∥∥∥∥
op,∞

}
≤
√

C0F (d(j, k)) sinh(
√

C0|t|),

where

C0 := ∥m−1∥∞ max {(∥ν∥∞ + dC2
V ∥Ψ∥∥F∥), dC2

V ∥Ψ∥CF , 1}.

Hence,

∥{αt(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1
√

C0 sinh(
√

C0t)D(X, Y ).

Note also that the case t = 0 implies that

∥{α0(f), g}∥∞ = 0,

as it must be, since f, g have disjoint support. In particular, for all t ∈ R

∥{αt
Λ(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1

√
C0(e

√
C0|t| − 1)D(X, Y ), (8)

which follows from the estimate

sinh(
√

C0|t|) = 1
2
(
e

√
C0|t| − e−

√
C0t
)

≤ 1
2(e

√
C0|t| − 1).

Note that, if Γ is equipped with such a function F , then for every µ > 0,
the function

Fµ(r) = e−µrF (r) (9)
also satisfies the convolution condition with the same constant CF (as follows
from the triangle inequality). Moreover ∥Fµ∥ ≤ ∥F∥. Setting then

∥Ψ∥µ := sup
k,j∈Γ

Ckj

Fµ(d(k, j)) , µ > 0; (10)
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it is easy to see that for all t ∈ R,

∥{αt
Λ(f), g}∥∞ ≤ 4∥f∥C1∥g∥C1

√
Cµ sinh (

√
Cµ|t|)

∑
x∈X

∑
y∈Y

e−µdist(x,y)F (d(x, y))

≤ 4∥f∥C1∥g∥C1

√
Cµ sinh (

√
Cµ|t|)e−µdist(X,Y ) min {|X|, |Y |} max

y∈Γ

∑
x∈Γ

F (d(x, y))

= 4∥f∥C1∥g∥C1

√
Cµ min {|X|, |Y |}∥F∥ sinh (

√
Cµ|t|)e−µdist(X,Y ),

where Cµ is given by C0 with ∥Ψ∥ replaced by ∥Ψµ∥. In particular,

sinh (
√

Cµ|t|)e−µ dist(X,Y ) ≤ 1
2e

√
Cµ|t|−µ dist(X,Y ).

Hence, one obtains exponential decay in dist(X, Y ) whenever |t| < µ√
Cµ

dist(X, Y ).
Notice that this holds for all fixed dist(X, Y ) if |t| is sufficiently small. There-
fore, we have obtained the following corollary.
Corollary 9: Assume the conditions of Theorem 8. For all µ > 0 and
t ∈ R, it holds

∥{αt
Λ(f), g}∥∞ ≤ C∥f∥C1∥g∥C1e

−µ(dist(X,Y )−
√

Cµ|t|
µ

)
,

for come constant C > 0 depending on the Hamiltonian, the supports X
and Y of the observables f and g, respectively, on the function F , and on
µ.

4 Existence of the global dynamics

The first step in defining global dynamical system, is the construction of
a C∗−algebra. Since we are dealing with infinite particles lattices systems
for which the single-site phase space is non-compact and unbounded, one
has to be careful. A promising and convenient framework is provided by
the commutative resolvent algebra [14], a recent development that has been
shown to arise as the strict classical limit of the non-commutative resolvent
algebra originally introduced by Buchholz and Grundling. This algebra is
specifically tailored to accommodate the difficulties presented by unbounded
configuration and momentum variables, making it a natural setting for de-
scribing observables of infinite classical systems [15]. Importantly, if X is
an infinite dimensional normed vector space, the commutative resolvent al-
gebra CR(X) can be constructed as the inductive limit of algebras C0(V )
over finite-dimensional subspaces V ⊆ X, capturing the quasi-local nature
of observables in a natural and well-behaved manner [2, 14]. This inductive
limit structure is crucial for studying the thermodynamic limit: infinite sys-
tems emerge as limits of increasingly large finite subsystems. This approach
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facilitates a rigorous algebraic description of physically significant phenom-
ena such as spontaneous symmetry breaking and phase transitions, which
are inherently infinite-volume effects, yet arise from finite approximations
[8, 17, 16].

4.1 The commutative resolvent algebra

The commutative resolvent algebra is defined as follows. Let X be a (possi-
bly infinite-dimensional) real-linear inner product space. The commutative
resolvent algebra of X, denoted CR(X), is the C*-subalgebra of the algebra
of bounded operators Cb(X) generated by resolvent functions on X, i.e.,
functions of the form

hλ
x(y) := 1/(iλ − x · y),

for x ∈ X, λ ∈ R \ {0}. Here, the inner product · is the one standard one
induced by the complex structure compatible with the symplectic form. The
inner product on X yields a norm || · || and a topology with respect to which
hλ

x : X → C is a continuous function.

We now consider CR(Ω), with Ω = ℓc(Γ,R2r) ⊆ ℓ2(Γ,R2r) defined in Section
2.1. As a result, CR(Ω) is the inductive limit of the net of all CR(V ), where
V ⊂ Ω ranges over all finite-dimensional subspaces of Ω, and the connecting
maps defining this limit are the pull-backs of the projection maps W ↠ V
for V ⊂ W . This remains true if one restricts the net to any cofinal class of
finite-dimensional subspaces. It follows that

CR(Ω) = lim−→ CR(ΩΛ),

where the inductive limit is taken with respect to the pull-backs of πΛ|Λ′ :
ΩΛ′ → ΩΛ (Λ ⊆ Λ′ ⋐ Γ), where πΛ : Ω → ΩΛ is the orthogonal projection
onto ΩΛ. Hence, CR(Ω) is an algebra of “quasi-local” observables, containing
a dense subalgebra of “local” observables, i.e. functions that only depend
on finitely many particles.

We define the subspace SR(Ω) ⊂ CR(Ω) as the span of so-called levees g ◦ π
for which g is Schwartz, namely

SR(Ω) := span{g ◦ π | π fin. dim. projection on Ω, g ∈ S(ran(π))}, (11)

where S(ran(π)) denotes the Schwartz space on ran(π). More generally, a
“levee” is a function f = g ◦ π ∈ CR(Ω) for a finite dimensional projection π
and a function g ∈ C0(ran(π)). By [14, Prop. 2.4] the set SR(Ω) is a dense
*-subalgebra of CR(Ω).

We can put a Poisson bracket on SR(Ω) by use of the canonical Poisson
bracket on C∞(ΩΛ) ∼= C∞(R2|Λ|r), as follows. For any two functions f1, f2 ∈
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SR(Ω) we can choose Λ ⋐ Γ large enough such that f1 = g1 ◦ πΛ and f2 =
g2 ◦ πΛ for functions g1, g2 ∈ SR(ΩΛ) ⊆ C∞(ΩΛ), and where πΛ : Ω → ΩΛ
denotes the orthogonal projection. We define

{g1 ◦ πΛ, g2 ◦ πΛ} := {g1, g2}Λ ◦ πΛ,

where {g1, g2}Λ is defined by

{g1, g2}Λ(p, q) :=
∑
j∈Λ

d∑
i=1

(
∂g1(p, q)

∂qj,i

∂g2(p, q)
∂pj,i

− ∂g1(p, q)
∂pj,i

∂g2(p, q)
∂qj,i

)
,

for all (p, q) ∈ ΩΛ. One can prove that {g1 ◦ πΛ, g2 ◦ πΛ} does not depend
on Λ and lands in SR(Ω). Note further that this bracket coincides with the
one defined in Section (3.1).

This algebraic formalism of resolvent algebras allows one to derive a
global C∗-dynamical system. This has been particularly proved in [15, Thm.
14]. In this paper, we provide an alternative proof making use of the Lieb-
Robinson bounds obtained in the previous section. The main result is the
following theorem.
Theorem 10 (Existence of Infinite-Volume Dynamics): Assume Γ is equipped
with a function F satisfying the conditions in Section 2.3. Then, the lo-
cal automorphism αΛ

t converges to a globally defined automorphism of the
commutative resolvent algebra CR(Ω), as Λ → ∞. Moreover, convergence
is uniform for t in the compact intervals [−T, T ].

Proof. Let us first take t > 0. Fix a local observable

f ∈ SR(ΩX) ⊂ CR(ΩX),

supported in a finite set X ⊂ Γ. Let Λ1 ⊂ Λ2 be finite subsets of Γ such
that X ⊂ Λ1. For a finite volume Λ ⊂ Γ, write

HΛ = Hhar
Λ + H int

Λ , Hhar
Λ =

∑
k∈Λ

(∥pk∥2

2mk
+ νk∥qk∥2

2

)
, H int

Λ =
∑
Z⊂Λ

Ψ(Z),

(12)
where

Ψ(Z)(p, q) :=
{ 1

2Vkl(qk − ql), if Z = {k, l};
0, else

We denote by Φ0,Λ
t the flow of the harmonic oscillator, the time evolution

by
α0,Λ

t (f) := f ◦ Φ0,Λ
t , f ∈ CR(ΩΛ).

Since Φ0,Λ
t is only a rotation, the pullback leaves the commutative resolvent

algebra CR(ΩΛ) invariant, i.e.

f ∈ CR(ΩΛ) =⇒ α0,Λ
t (f) ∈ CR(ΩΛ).
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We also define the interaction-picture observable
γΛ

t (f) := f ◦ Φ0,Λ
−t ◦ ΦΛ

t ,

where ΦΛ
t denotes the flow of the full Hamiltonian HΛ. It satisfies the time-

dependent equation
d

dt
γΛ

t (f) =
{
H̃ int

Λ (t), γΛ
t (f)

}
, γΛ

0 (f) = f, (13)

with the interaction-picture Hamiltonian
H̃ int

Λ (t) := α0,Λ
−t (H int

Λ ) =
∑
Z⊂Λ

Ψ(Z) ◦ Φ0,Λ
−t . (14)

Let us denote by B the set of all Z ⊂ Λ2 for which Z ∩ (Λ2 \ Λ1) ̸= ∅. Then,
defining

F (s) := γΛ2
s

(
γΛ1

t−s(f)
)
, s ∈ [0, t],

it follows that

γΛ2
t (f) − γΛ1

t (f) = F (t) − F (0) =
∫ t

0

d

ds
F (s) ds

=
∫ t

0
ds γΛ2

s

({
H̃ int

Λ2 (s) − H̃ int
Λ1 (s), γΛ1

t−s(f)
})

, (15)

with
H̃ int

Λ2 (s) − H̃ int
Λ1 (s) =

∑
Z∈B

α0,Λ2
−s (Ψ(Z)).

We are going to use the classical Lieb-Robinson bound for bounded interac-
tions to estimate the norm difference

∥γΛ2
t (f) − γΛ1

t (f)∥∞. (16)

To this end, note that γΛ1
t−s(f) is still defined in CR(ΩΛ1), since the local

dynamics αΛ
t leaves the algebra CR(ΩΛ) invariant for each t ∈ R and Λ ⋐ Γ,

and the part coming from the harmonic oscillator only rotates [15, Thm.
13]. Let us now estimate (16). Using the identity obtained in (15), it holds

∥γΛ2
t (f) − γΛ1

t (f)∥∞ ≤
∑

{k,j}∈B

∫ t

0
ds∥{α0,Λ2

−s (Ψ({k, j})), γΛ1
t−s(f)}∥∞

=
∑

{k,j}∈B

∫ t

0
dτ∥{α0,Λ2

−(t−τ)(Ψ({k, j})), γΛ1
τ (f)}∥∞.

We further estimate the integrand{
α0,Λ2

−(t−τ)(Ψ({k, j})), γΛ1
τ (f)

}
(p, q)

=
(1

2
∂(Vkj ◦ Φ0,Λ2

−(t−τ))
∂qk

(p, q)
)T ∂γΛ1

τ (f)
∂pk

(p, q)

+
(1

2
∂(Vkj ◦ Φ0,Λ2

−(t−τ))
∂qj

(p, q)
)T ∂γΛ1

τ (f)
∂pj

(p, q).
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As proved in [15, Lemma 15], for all t ∈ R it holds∥∥∥∥∂(Vkj ◦ Φ0,Λ2
t )

∂qk

∥∥∥∥
op,∞

≤ dCklCV ≤ ∥Ψ∥dCV F (d(k, j)),

where the last inequality following from Assumption 3. Let us write

Φ̃τ (p, q) := Φ0,Λ1
−τ ◦ ΦΛ1

τ (p, q) = Φ0,Λ1
−τ (p(τ), q(τ)) = (p̃(τ), q̃(τ)).

Then, by the chain rule,

∂γΛ1
τ (f)
∂pk

(p, q) =
∑
j∈X

[(
∂f

∂qj
(Φ̃τ (p, q))

)T

· ∂q̃j(τ)
∂pk

(p, q) +
(

∂f

∂pj
(Φ̃τ (p, q))

)T

· ∂p̃j(τ)
∂pk

(p, q)
]

,

where
q̃j(τ)(p, q) = (Φ0,Λ1

−τ (p(τ), q(τ)))q
j .

Since f ∈ SR(ΩX) each of its (first) derivatives are uniform bounded, i.e.
∥f∥C1 < ∞, it again follows that by the chain rule that

∂q̃j(τ)
∂pk

(p, q) =
∑
ℓ∈X

∂(Φ0,Λ1
−τ )q

j

∂qℓ
(p(τ), q(τ))∂qℓ(τ)

∂pk
(p, q) +

∂(Φ0,Λ1
−τ )q

j

∂pℓ
(p(τ), q(τ))∂pℓ(τ)

∂pk
(p, q)

 .

(17)
Furthermore, as Φ0,Λ1

τ is a harmonic rotation and the coefficients are all
bounded (Assumption 1 (iv) and [15, Lemma 15]), we may estimate∥∥∥∥∂q̃j(τ)

∂pk

∥∥∥∥
op,∞

≤
∑
ℓ∈X

(∥∥∥∥∂qℓ(τ)
∂pk

∥∥∥∥
op,∞

+
∥∥∥∥∂pℓ(τ)

∂pk

∥∥∥∥
op,∞

)
,

and similarly for ∂p̃j(τ)
∂pk

(p, q). The norms on the right-hand side are estimated
as follows. If we let

Jℓk(t) := max
{∥∥∥∥∂qℓ(t)

∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂pℓ(t)
∂qk

∥∥∥∥
op,∞

,

∥∥∥∥∂qℓ(t)
∂pk

∥∥∥∥
op,∞

,

∥∥∥∥∂pℓ(t)
∂pk

∥∥∥∥
op,∞

}
it follows from the above that∥∥∥∥∂q̃j(τ)

∂pk

∥∥∥∥
op

≤ 2
∑
ℓ∈X

Jℓk(t).

This entails the bound∥∥∥∥∂γΛ1
τ (f)
∂pk

∥∥∥∥
op

≤ 4∥f∥C1
∑
ℓ∈X

Jℓk(t),

Similarly, ∥∥∥∥∂γΛ1
τ (f)
∂pj

∥∥∥∥
op

≤ 4∥f∥C1
∑
ℓ∈X

Jℓj(t).
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We conclude that∥∥∥∥{α0,Λ2
−(t−τ)(Ψ({k, j})), α̃Λ1

τ (f)
}∥∥∥∥

∞
≤ 4d∥f∥C1∥Ψ∥CV F (d(k, j))

∑
ℓ∈X

(Jℓk(t) + Jℓj(t)).

(18)

Hence, using the decay estimates on the Jacobians from the previous sec-
tions, this further implies that, (18) is bounded by

C ′
0

√
Cµ sinh(

√
C0|t|)F (d(k, j))

∑
ℓ∈X

(
F (d(ℓ, k)) + F (d(ℓ, j)),

where C ′
0 absorbs the constants 4, CV , ∥f∥C1 , d and ∥Ψ∥. Continuing from

the previous estimate, integrating in time yields∫ t

0

∥∥∥∥{α0,Λ2
−(t−τ)(Ψ({k, j})), α̃Λ1

τ (f)
}∥∥∥∥

∞
dτ

≤ C ′
0
√

C0F (d(k, j))
∑
ℓ∈X

(
F (d(ℓ, k)) + F (d(ℓ, j))

∫ |t|

0
sinh(

√
C0s) ds. (19)

Using∫ |t|

0
sinh(

√
C0s) ds ≤ 1√

C0
(cos(

√
C0|t|) − 1) ≤ 1√

C0
cos(

√
C0|t|)

we get the following upper bound for (19), i.e.

≤ C ′
0F (d(k, j))

∑
ℓ∈X

(
F (d(ℓ, k)) + F (d(ℓ, j))

)
cosh(

√
C0|t|).

Summing over all pairs {k, j} ∈ B, where B is the set of interactions inter-
secting Λ2 \ Λ1, we have

∑
{k,j}∈B

∫ t

0

∥∥∥∥{α0,Λ2
−(t−τ)(Ψ({k, j})), γΛ1

τ (f)
}∥∥∥∥

∞
dτ ≤

C ′
0 cosh(

√
C0|t|)

∑
{k,j}∈B

F (d(k, j))
∑
ℓ∈X

(
F (d(ℓ, k)) + F (d(ℓ, j))

)
.

Using the convolution property of F0, this quantity is bounded by

≤ 2CF C ′
0 cosh(

√
C0|t|)

∑
ℓ∈X

∑
x∈Λ2\Λ1

F (d(ℓ, x)).

Since ℓ ∈ X ⊂ Λ1, we use the properties of F (see Section 2.3) and finiteness
of X to conclude that ∑

ℓ∈X

∑
x∈Λ2\Λ1

F (d(ℓ, x)) → 0,
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as Λ1, Λ2 ↗ Γ. Putting all together,

∑
{k,l}∈B

∫ t

0

∥∥∥∥{α0,Λ2
−(t−τ)(Ψ({k, j})), γΛ1

τ (f)
}∥∥∥∥

∞
dτ ≤

2CF C ′ cosh(
√

C0|t|)
∑
ℓ∈X

∑
x∈Λ2\Λ1

Fµ(d(ℓ, x)) → 0, (Λ2, Λ1 ↗ Γ).

From the right-hand side one immediately sees that γΛ
t is a Cauchy net

in CR(Ω), hence convergent.

Finally, recall

γΛ
t (f) := α0,Λ

−t ◦ αΛ
t (f) =⇒ αΛ

t (f) = γΛ
t (f ◦ Φ0,Λ

t ) = γΛ
t (f ◦ Φ0,X

t )

where Φ0,X
t is the free harmonic oscillator flow restricted to X. Note that

f ◦ Φ0,X
t ∈ CR(ΩX) is a function independent of Λ. Hence, if Λ1, Λ2 grow

large,
∥αΛ2

t (f) − αΛ1
t (f)∥∞ → 0,

as desired. From our bounds it is clear that this holds for any compact time
interval. To conclude we note that the facts

• αt(·) extends to all of CR(Ω);

• αt(·) is an isometric ∗-homomorphism;

• t 7→ αt is a group homomorphism,

are direct consequences of the proof of [15, Thm. 14]. Hence, t 7→ αt is a
one-parameter subgroup of automorphisms of CR(Ω) and thus describes the
infinite-volume dynamics. This finishes the proof.
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