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Abstract

We prove a full large deviation principle for Gibbs measures arising in
the semiclassical limit of quantum spin Hamiltonians and provide an
explicit characterization of the associated rate function. In this limit,
the probability measures are shown to concentrate on the Riemann
sphere.

Introduction

Large deviation theory provides a rigorous framework for analyzing the prob-
abilities of rare events, capturing how these probabilities decay exponentially
in the limit of a small parameter [I8]. It plays a central role in understand-
ing the concentration of measure phenomena and quantifying the asymptotic
behavior of sequences of probability measures. At the heart of this theory
lies the rate function, a non-negative, lower semicontinuous functional that
governs the exponential rate of decay. This function often admits an inter-
pretation analogous to entropy, reflecting the system’s fluctuations around
its typical behavior.

In statistical mechanics, large deviation principles (LDPs) have been
extensively developed for classical lattice spin systems, offering a powerful
tool for describing probabilistic behavior in the thermodynamic limit |2} 4].
This approach typically analyzes systems as the number of lattice sites or
the system volume increases. In contrast, the study of large deviations
in the thermodynamic limit of quantum spin systems remains relatively
underexplored: with only a few results available, as outlined, for instance,
in [5l, 8, 12| [13] are available.
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Beyond the thermodynamic limit lies another crucial asymptotic regime:
the semi-classical limit, which describes the transition from quantum to
classical systems. This transition is mathematically captured by quanti-
zation theory, offering a rigorous framework in which quantum states are
approximated by probability measures on a classical phase space, with the
approximation governed by a suitable semiclassical parameter. A natural
and compelling question arises: can the rate at which a quantum system
approaches its classical counterpart be described within the large deviation
framework?

This work directly addresses this question. We focus on the equilibrium
states of quantum spin systems, described by the Gibbs state associated
with a quantum spin Hamiltonian. These states are parametrized by the
spin quantum number N € N = {1,2,3,...}, which serves as an effective
semiclassical parameter. Our objective is to establish an LDP for the en-
suing probability measures and to characterize the rate of convergence as
N — o0. By doing so, we aim to bridge the gap between quantum statistical
mechanics and large deviation theory, offering new insights into the semi-
classical behavior of quantum spin systems.
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Spin coherent states

We denote the algebra of bounded operators on CN*t! by B(CN*1) ~
Mn+1(C), and the associated operator norm by || - |[op,n. We consider a
single quantum spin of fixed total angular-momentum N := 2J € N and
denote by S = (57, 52,S53) the usual angular momentum operators acting
on the (N + 1)-dimensional complex Hilbert space CV*!, that is

[S1,S2] = iS5, and cyclically,

S+ = 51 £145s.
and NN
SQ:S%+S§+S§:2(2+1>I,

where I always denotes the unit of My1(C) for any N. In other words,

% <gf + 1) is the eigenvalue corresponding to the operator S2.

Analogously, as observed by E. Majorana [9], we may view a single-particle



quantum spin system of spin J = N/2 as a collective spin system of N spin-
% particles, subject to permutation invariance. Equivalently, the Hilbert
space CN*! carrying the spin-J = N/2 representation is isomorphic to the
symmetric subspace

N
v = Sym™(C?) ¢ (R C* =: Hy,

and the angular momentum operators (51, S2, S3) correspond to restrictions
of the canonical generators T' = (T4, T»,T3) of the N-fold tensor product
representation of the Lie-algebra su(2), i.e.

N
TH: ZT;Sk)7 M:172737 (1)
k=1

with T,Sk) acting as the spin Pauli matrix ¢,, := %O’N on the k-th tensor factor
and as the identity on all others. These therefore define bounded operators

on Hy, i.e. Ty, € B(Hy). In particular, by permutation invariance
SM_TH|9{?.V, w=1,23,

where = should be understood in the sense of unitary equivalence. Note

also that T}, leaves H}; invariant.

On the classical side, we consider the one-point compactification of the
complex plane, commonly known as the Riemann sphere S?. This space can
be identified with the complex projective line which naturally carries the
structure of a compact Kahler manifold, and can therefore be interpreted as
the “physical phase space”. This allows the notion of coherent spin states,
introduced in what follows.

Let Q = (6, ¢), has polar angles 6§ € (0,7), ¢ € [0,27). Let |1),]}) be
the normalized eigenvectors of o3 in C2, so that

a3ty =11,  a3li) =),
and consider the unit Bloch vector
|Q); = cos(%) 1) + ' sin(%) 1) € C2. (2)

For N € N, we define N-coherent spin vector |Q) y € H%;, equipped with
the usual scalar product inherited from Hpy, as

[DOn =|D1®--- @) (3)

N times

It is not difficult to see that the map S? 5 Q — |Q2); € C? lacks continuity at
the north pole Qg := (0, ¢) and south pole Q; = (m, ¢), where ¢ € [0,27) is



arbitrary. Nonetheless, continuity is preserved at the level of scalar products.
To demonstrate this, for 0 < M < N we introduce the Dicke state

M) = M L, (N — M) 1)

which corresponds to the normalized symmetric vector with M spins in |J)
and N — M spins in [1) [I4, Chapter 7]. The following lemma establishes
this property.

LEMMA 1: Let A € B(H%;). Then the map

ST— R, Q— QAN

is continuous. In particular, for Qy := (0,¢), Qr = (7, ¢) and ¢ € [0, 27)
arbitrary

Q—}QO
(A1) v = lim (QA|Q) N = (N|A|N) N,
Q—Qr

Proof. The spin-N coherent (Bloch) states can be expressed in the Dicke

basis as
N 1/2 N—M M
N 0 0 ,
Q=3 ( ) <cos> (sin ) e M9 |11), (4)
=\ 2 2

where Q = (0, ¢) € S%. By direct inspection, for any bounded operator A €
B(33), the expectation value (Q| A|Q2) v is continuous on S?\ {(0, ¢), (7, ¢)}.
In the limit Q@ — Qg := (0, ¢) (i.e. § — 0), we have cos(0/2) — 1, sin(6/2) —
0. Therefore, in the expansion , all terms with M > 1 vanish, and the
only surviving contribution is that of M = 0. Hence,
lim (QA[Q)n = (0[A]0)n,

Q*)QO
which corresponds to the fully polarized Dicke state with all spins up. Sim-
ilarly, in the limit 2 — €, we have cos(6/2) — 0, sin(6/2) — 1. Therefore,
in the expansion , all terms with M < N — 1 vanish, and the only sur-
viving contribution is that of M = N. Hence,

lim (QA[Q)y = (N|A|N)n,

Q—Qx

which corresponds to the fully polarized Dicke state with all spins down. [



Berezin maps

For a bounded function f : S — C, we denote the usual supremum norm
by || fllec- When f € C(S?) is continuous, we define the Berezin maps by

Qn: C(8Y) = BER),  fr— o [ aas@eely,
T Js2

where d) the unique SO(3)-invariant Haar measure on the unit sphere S?,
normalized such that [ dQ = 47. The operator |2)(Q|y is the one dimen-
sional projection onto the subspace spanned by the N-coherent spin vectors,
cf. . This structure moreover yields, with I being the identity operator
on H%, [11]:

_N+1

1 dQ22)(Q
— [, au @,
1 N+1 ! / ! 2
£(9) = Jim == [ a0 @) @)

Quantum spin Hamiltonians

As mentioned above, a single particle quantum spin system may be inter-
preted as a symmetric tensor product of matrices, restricted to the invari-
ant subspace H3;. To clarify this interpretation, we now present a concise
overview.

Let t1 = 01/2, toa = 09/2, t3 = 03/2 be the spin—% operators. For a
multi-index a = (a1, @z, a3) € N3 with |a| = a3 + ag + a3z = L, consider the
L-fold tensor

HR - R Rta®I3R - Rt3.

a1 a2 a3

Its fully symmetric version is obtained by applying the normalized sym-
metrization operator Sy

=i (L@ OhEhe  QLeL e - 8l),

aq [e %5} a3

where 7r£ is defined by Eq. in the Appendix. Each symmetric tensor ¢,
can be uniquely identified with the monomial [7, Lemma 3.2]

_ ol .02 (3
Palz1, 22, 23) = 27" 257 w3%.

The corresponding symmetric sequence in the N-spin algebra is then defined,
for N > L, as
afy”) =k (ta), (5)



where 7r{<[ is the embedding map defined in Eq. . A general polynomial

of degree K,
K

h(z1,2,23) = > Y caaflag?as,
L=0|a|=L

with coefficients ¢, € C, corresponds to the symmetric sequence

K
ag\};) = Z Z Ca agg“).
L=0 |a|=L
Hence, by defining
FIN = as\?)

we generate a scaled mean-field quantum spin Hamiltonian Hy. This oper-
ator canonically acts on Hy, but leaves the symmetric subspace H3; invari-
ant. In particular, by restricting Hy to H3, we get an operator defined on
an (N + 1)-dimensional Hilbert space. The single particle quantum spin
Hamiltonian is then defined by

HY == NHylss,, (6)

so that ||Hy||nep = O(NN). From a physical perspective, this implies that
the spectral radius scales with the dimension of the underlying space.

Remark 2. To see that the symmetrizer indeed produces a physically mean-
ingful model, we first consider an example. Let T' = (711,7%,73) be the
operators defined in . Then

T; = Ny (t:),
so that, when restricted to the symmetric subspace,

Ti‘g{]sv = Nﬂ']l\/(ti)

Hy'
More generally, for any polynomial h in three real variables, the operator
2
h(NT)

seen as polynomial in the three non-commutative averages satisfies
2 _ 1
(T ) lgee, — H3 =0(5) N-
H N |fHN N op, N N/’ o

where Hf, = H#;/N is defined above. This explicitly confirms several obser-
vations done in [6]. Moreover, as a consequence of [I1, Thm. 2.3] and [I7],
one has the following identification with Berezin quantization, i.e.

_ 1
|83 = Qu ()l n = O(57). N = e,

where h|s2 denotes the restriction of the polynomial h to the unit sphere
S2. Hence, the operators h(%T)LHS and Qn(h|sz) can be seen as (scaled)
N

quantum spin Hamiltonians representing H - |



Classical limit

Let (H3/) be a sequence of quantum spin Hamiltonians in B(3H%;) that satisfy
(@. The local Gibbs state w]ﬁv at inverse temperature 8 > 0 is defined by

—BHS A
3 Trle PN Al s
wy(A) = ————, A € B(HYy).

By direct inspection, one sees that the Berezin map Qn is strictly positive
(see also [11 [I5]), so that the local Gibbs state wJBV at inverse temperature
B > 0 induces a positive linear normalized functional (i.e., a state) on S?,
via

ox = wh o Q.
As a matter of fact, plugging in the definition of wjﬁv, this now reads

TrleP"%Qn (f)]

on(f) = Trle=PHY]

By definition of the Berezin map @y, the state Q']BV in turn corresponds with

a probability measure ,u]ﬁv on S?, which assumes the following form

N +1 Qe PHYV O
Wy =21 /dQHeNH
U

47 Trle PHN] 7
where U C S? is a measurable Borel set.

As is known [I6, Prop. 4.11], for f € C(S?) arbitrary, the free energy (or
pressure) for the function h given above is

5 m ~BHHNQN ()
Fl,:R—R, tr—>]\}1_I>nOONlogTr(e N )
exists for all t € R. In particular, F| ,f 7 Is given by
Fy () = ~inf (Bh+tf).

On account of [16, Cor. 4.8], the existence of the classical limit

P(f) = lim o} (f)

N—oo

is guaranteed provided in addition that F}? g is differentiable at t = 0. In
that case, the classical limit is given by

By 4 8
)= | B0,



Indeed, differentiability is guaranteed only in very specific cases [3, 6] [10),
15, [I7]. In other words, the classical limit generally does not exist, and this
is not an assertion we make.

Nonetheless, one can still attempt to characterize the asymptotic behav-
ior of the sequence of measures u]ﬁv. The physical intuition to keep in mind is
that the measures concentrate on a suitable subset of the phase space S? and
outside these sets, they decay exponentially. A central and intriguing ques-
tion is to determine the precise rate at which this decay occurs. This rate
encapsulates the nature of quantum fluctuations and appears to be amenable
to rigorous computation. The appropriate mathematical framework for cap-
turing such behavior is provided by the theory of large deviations, which will
be introduced in the following section.

Principle of large deviations

Below the definition of a large deviation principle is presented.

Definition 3 (LDP). A sequence of probability measures (1) nen on a Pol-
ish space X equipped with the Borel Y-algebra satisfies a large deviation
principle (LDP) with a good rate function I : X — [0, 0], if

(i) I has compact sub-level sets {z € X | I(z) < k} for all k € [0, 00),

(ii) for all compact C' C X,

1
lim sup N logun(C) < — iréf I,

N—oo

(iii) for all open O C X,

1
N > infl
l}&o%leoguN(O) > néfl

Main result

Our main result is the following. Recall the measures ,u’]BV defined for a se-
quence of self-adjoint Hamiltonians (Hy;) and 3 > 0, defined for measurable
subsets U of X = S? as

N+1 (Qle PHN Q) v
B

U) = dn e PPN
mvlU) = =4 /U Trle PHx]

THEOREM 4: Let a sequence of Hamiltonians (Hy(s))n assuming the form
@ for h a polynmomial in €2 be given. Then, the sequence of probability
measures (,u?v) satisfies a large deviation principle with a good rate function
I8 :8? — [0,00)

°(Q) .= -G(Q) - Binfh,

8



where G? is given by the limit
1 s
B — -BH
G’ () = ]&%Nlog (Qle™PU N Q) N

for all Q € S2.

Before proving the theorem we shortly explain the strategy of the proof
to aid the reader. Our strategy is to write the probability measure uy, as

N+1 eNva(Q)
 4r Tr[e‘ﬁH}gv]’

where

1
G5 () = o log Qe PN )| .

We will then prove that approximate N Gfi, is almost sub-additive. To this
avail, we first take p, to be a homogeneous monomial of degree Ly, i.e.
Palz1, 22, 23) = 27" 25?25®, where |o| = Lg. As seen above, this monomial

corresponds to a symmetrized tensor of the form

ta=m 0 (h®  BhOhe BhLok e - 8l),

aq a2 a3

and the associated symmetric sequence is
aggo‘) = 7T]I</0 (ta)-

Let us abbreviate

ak = ai Loy, = T3 (ta)locy,-
We can now phrase our result in the following general form. For N, M > Lg
consider the m-sequences (monomials)

an = W]L\,O(ta); ay = W]L\,O(ta)b(i,;
ans = mip(ta); @iy o= mip (Fa)logy,
L L
an+m =N (ta); Gy = 7TNOJrM(tO‘)’g{?wM‘

This leads to the following lemma.
LeEMMA 5: With the notation introduced above, for all N, M > Lyg, it holds

<Q, €(N+M)Q?V+MQ>N+M < C<Qv eNafVQ>N<Qa 6MG?MQ>M’ (7)

for some constant C = C(Lg, N, M) with C > 1 and C = O(1), as N, M —
oo. In particular,

1 ., 1 .,
lim Nlog (Q,eN NQ)]V:I]I\l[leOg (Q,eNNQ) . (8)

N—oo

9



Proof. We start with the following observation. Restricting the symmetric
sequence (an) to H?3, corresponds to the operator aypy, where py is an
orthogonal projection onto H%;. Since the coherent state |2)y € I3, and
an leaves HY, = ran(py) invariant, it follows that

(Q,eNN Q) v = (Q, NNy,

i.e., it does not matter whether we restrict the symmetric sequence ay to
% or not. This allows us to work directly with the sequence (ay), and

prove for an.
Now we consider right-hand side of . We first observe, for any matrices

any € BN and by € BM7 it holds
€N @ MM = (o @ 1) (L © VM) = aN®lar g InGby _ can®@ly+inEby
If we apply the product state |2) y4as, one finds
(Q, €9 QY y (€2, DM Q) = (Q, e Ol HInEba Yy o
We use the following identity: for all N, M > Lg

antyr = 3% (ta) = Tnam (TR0 (ta) ® 1) = Tnin(an ® 1ar)

= mnem(any © 1) = Tvaem (v @ 70 ().
This implies that for symmetric sequences (ay)n,
an+m(any @ 1y + 1y @ ap) = 2an+0s
In particular,
TN (Nay @ 1y + 1ny @ Maps) = (N + M)ani -

Therefore, the first assertion @ holds true whenever there exists a bounded
constant C' = C(N, M, Lo) with C > 1 and C' = O(1), such that

<QN+M 67TN+]\/1(NCLN®1M+1N®MCLM)QN+M>
)

< C(QNFM  Nan@la+ine@Mar N+My, 9)
whenever N, M > Lg. To prove @, let us denote by

X =Nan®1ly +1y Q May,.
In this notation, @ reads

(Q, ™M) v < CUQ, e Q) g

10



We first prove the following claim.
Claim:
The symmetrization over the full permutation group G := Sy s satisfies

mn+m(X) = ax (Lo, N,M) X + Rx,

where ax (Lo, N, M) is a coefficient and Ry denotes the interaction terms,
i.e., the components of the symmetrized operator that do not preserve the
tensor block structure of X. More precisely, there exists an Lg, N, M-
dependent constant E(Lg, N, M), cf. below, such that

e Rx has norm bounded by

[Rx|l < E(Lo, N, M) (N + M)

o The coefficients ax (Lo, N, M) satisfy
Oéx(L(),N,M) =1- E(Lo,N,M) —1
uniformly as N, M — oo.

Proof:
We can group the total number of permutations in G as follows:

(I) permutations that only act on the N-block, not acting on the M-block;

(IT) permutations that do not act on the N-block, acting only on the M-
block;

(ITII) permutations that only permute identities between the N and M
block, keeping the non-trivial tensors untouched;

(IV) permutations that only interchange non-trivial tensors between the N
and M blocks, leaving the identities untouched.

In this way, ax (Lo, N, M) corresponds to the number of permutations in
G that leave the operator X invariant, i.e. to group (I),(II) and (III). The
interaction terms (group IV) arise from permutations that map at least one
nontrivial operator a; originally supported in the N-block into the M-block,
or vice versa, while at least one other nontrivial operator remains in the
N-block. By assumption, since Lg is the total number of nontrivial tensor
factors in X, the number of permutations corresponding to such interactions

IS ) (E)e

11

where



. (A,f ) counts the ways to assign k nontrivial operators to the M-block,

. (1760) counts the ways to pick k nontrivial operators out of the Ly.

The extreme cases k = 0 and k = Ly are excluded since they correspond to
all nontrivial operators residing entirely within one block, thus preserving
the form of X and not contributing to interactions. Similarly, the contri-
bution from permutations originally assigning nontrivial operators in the
M-block and mapping some into the N-block is given by

£ ()0

Their total is bounded above by

S () E Q) (E)ezco (i) w

where the last inequality follows from the Vandermonde identity and C'(Lg)
only depends on Ly, not on M and N. Hence, the total fraction of the
interaction terms in the symmetrization is given by

pita v =g S () (e o S (1) ()

k=1
C(Lo)
- LQ'(N+M* LO)!7

(12)

As a result, we indeed have the following decomposition
mN+Mm(X) = ax (Lo, N,M)X + Rx.
Note that indeed,

e X has norm bounded by ||X|| < N + M due to its prefactors N and
M and the fact that the ¢, are bounded by one;

e Ry collects the interaction terms of norm bounded by | Rx || < E(Lg, N, M)(N+

M);
o a(Lyg,N,M)=1— FE(Ly, N,M) — 1, uniformly as N, M — oo.

This proves the claim. |

To continue our prove we use Duhamel’s integral formula, stating that for
any square matrices A and B

1
GATB _ A _ / o(1=5)A Bs(A+B) g
0

12



In particular, for the choices A = X, B = Rx, and o = ax (Lo, N, M), we
set C' = (v — 1)A + B and obtain the following estimate

1
Hem\urM(X) o 6XH _ HeaA-I—B o eXH < /0 He(l—s)Aces(A—i-C)HdS <
1
/'”eu—$AdeA+cwdsfgHCHJAwwcw
0

By the previous claim, ellAITIC1 = O(N+M) || B|| = O(%) and

N-+M—Lyg)
1—(y::EXL0rN}A4)::O(UWE%;ESQ.Itﬁﬂb“mthat

v(Lg, N, M) := ||C||eAI+ICI
< (E(Lo, N, M)||A|| + || B|)elAlI+ICl

—0( N+ M
- \(N+ M — Ly)!

)O(eN+M) -0, (N,M — ).
By Cauchy Schwarz,
(Q, 00y (@, eXﬂ>N+M\ < e +3 () _ X|| < (Lo, N, M),

so that

(«, 67TN+]W(X)Q>N+M <{(Q, eXQ>N+M + (Lo, N, M)

Lo, N, M)
= (Q,eXQ 1 7(0”)
e >N+M( i (XN Nt

for all N, M > Ly. If we set

2v(N, M, Lo)

Lo, NN M) =14 ——F———-
C( 07 b ) + <QgeXQ>N+M

(13)
then
C(Lyp,N,M) — 1,

as N, M — oo uniformly, since the denominator decays at worst exponen-
tially, whilst the numerator decays super-exponentially (see above). If we
set
C:= sup C(Lyp,N,M),
N,M>Lyg

then 1 < C' < oo uniformly in N, M. This concludes the proof of equation

To prove we rely on Fekete’s theorem. To this avail, let us abbrevi-
ate

2y = log (Q, eV Q) .

13



From (9], the sequence (zy)nen satisfies

2manN <logC + zpy + zn,

for some bounded constant with logC' > 0 and all M, N > Ly. Moreover,
by Jensen’s inequality,
ZFN > (Q,anQ)N.

The limit of the right-hand side exists as N — oo: it corresponds to the
polynomial pg (€2), see e.g. [I5]. As a result, the sequence (5} )x is bounded
from below. We now claim that the limit

i ZN f ZN
m — = Int ——
N—ooco N NeN N

actually exists. To see this, define the sequence vy :=logC' + zn. Then
vpanN = log C + zpreny <logC + (log C + zp + 2n) = var + UnN-

Thus, (vy)n is subadditive. We may apply Fekete’s lemma, and conclude
that the limit . .
L= v =¥

exists. This implies that

lim 2 — oy logC _I
NgnooN_Ngnoo N N -

Clearly, |L| < oo, since (5¥) is bounded from below by a converging se-
quence. This proves the lemma. O

The following result extends the previous lemma to generic polynomials
in three real variables.

COROLLARY 6: Let h be polynomial of degree K,
K
h(z1,x2,x3) = Z Z Co 271 T3 28?,
L=0|a|=L

with coefficients ¢, € C, and consider the ensuing mean-field quantum spin
Hamiltonian HY;, as defined by @ Then, for all N,M > K it holds

(€, MR Q) v < C(Q, TN Q) N (9, 3 Q) gy,

for some bounded constant C > 1 depending on K, but not on N and M.
In particular,

.1 s o1 s
lim N log (Q, eNQ) v = 111%7f N log (€, N Q) . (14)

N—oo

14



Since the proof goes in an exact similar way as the one in Lemma [} it
is omitted.

Proof of Theorem[]]. For the lower bound we proceed as follows. for any
measurable (open) set U C S? it holds

1 g 1.  N4+1 1 NG 1 ~BHn(s)
Nlog,uN(U)—Nlog - —f—Nlog/UdQe N NlogTr[e ]

Taking the liminf yields
Jim inf log ¢ (U) = lim inf 1 log [ dQeNON®) 4 Binfh
N—oco N N N—ooco N U S2

On account of Lemma for all N € N and Q2 € S? it holds G?V(Q) > GP (),
and so is NG (@) > NG for any (2. Integrating both sides over U with

respect to the (normalized) measure dS) gives
1 8 1 8
—Nog/Ude N _—NogUde

We set
°(Q) = -G#(Q) — Binfh,

which is lower-semi continuous, since G?(£2) is upper semi continuous. By
Laplace Principle, the right-hand side satisfies

im L NG (Q) _ By — 8
A}gnooNlog/UdQe —sgp(G ) = HUlf( G”),

Therefore, we obtain
liminfi log 112 (U) > —inf I°
N5 N NYES=
implying the lower bound of the claim.

To prove the upper bound we proceed as follows. Fix ¢ > 0 and C C S?
compact. Since G#(Q) = infy GJBV(Q), for each Q € C there exists Ng € N
such that

G () <GP(Q) +e.

Q

Because each G']BV is continuous on S?, for every € C we can find an open
neighborhood Vi of € such that

sup G]B\,Q () < G]B\,Q (Q) +e < G*(Q) 4 2¢ < sup GP(Q) + 2¢
Q'eVq QeC

15



The family {Vg : Q € C} covers C. By compactness, choose a finite subcover
Va,s- .., Vaq, with associated integers Nq,,...,Nq, . Foreachi=1,...,m
we then have

sup G?VQA (Q) < sup GP(Q) + 2¢.
Qevg, QeC

Let Ny denote a common multiple of Ng,,..., Nq,,, e.g. their least common
multiple. For each 4 there exists k; > 1 such that No = k;Nq,. Let us
furthermore write ézﬂvo(Q) = G?VO(Q) Using sub-additivity repeatedly (as
in the proof of the Lemma |5 with constant Cy > 0) we obtain, for every
Q € S? and each 1,

G (@) < kG, (@) + kilog Co,

and hence, dividing by Ny,

8 < 8 log C()
Go () < Gy, () + max Nov
Because the sets Vq,,...,Vq,, cover C, for every 2 € C there exists ¢ such
that € Vy,. For such 2 we have
log C()

G% Q)< sup G2 () +
No ( )_Q/G%i Na, () Ne,

Using the previous estimate SUpys, Gﬁ[ﬁi < supq GP + 2¢, we obtain

8 < B lOg CO
Gy, (2) < sng + 2+ nax, No, -

Now fix N > Ny and write N = kNg+7r with 0 < r < Ng—1. Sub-additivity
gives, for all Q € S?,

GR(Q) < Gy, (Q) + GE(Q) +1og o,

and again, } )
G, () < KGR, () + (k — 1) log Co.

Combining both and exponentiating yields, for every 2 € C,

. ~8 .
eNGj’ir(Q) - GGQ(Q) < ekGNO ) er(Q) ek log Co )

Using the bound G]ﬁvo (Q) <supc GP + 2 + Maxi<i<m 13\%50 valid on C, we

i

get
log Cg _
8 ENo(supe GP4-2e+max) < < —220 B
eNGN(Q) <e Sism "No, )GGT(Q) eklogCo‘
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Integrating over C, taking logarithms, and dividing by N = kNgy + r gives

1 log C
1 NGR@ g < 1 / 5(9) 3 g
log/ d§2 "No T v log dQ) + sup G” + 2e + 1122?% No,

(15)

The first term on the right-hand side of is bounded by

1 -
— (1 1 B -
v, 1 (108 Vol(C) + G o),

which vanishes as k — oo because r < Ny —1 is fixed. Hence letting N — oo
(equivalently k — oo with fixed Ny) we find

1 1 1
lim sup — log eNG (© )dQ<Squ’8+2&‘+ max 0gC’+ 08 C
Nooco N c <i<m Ng, No

Choose the Ngq, sufficiently large such that maxj<j<y, % < e. Then, since
Ny > Ng,, also lz\gfoc < e. Thus

1
lim sup N log/ eNGR() g0 < sup G® + 3e.
c c

N—oo

Recalling the definition of the probability measure

B0 = 1 / NG Q) g0
IU’N( ) T’r[e_ﬂHJSv] Ce )

we obtain 1
lim sup N log u]‘i](C) < sup GP+ 3 iélzf h 4+ 3e.

N—oo

Defining the rate function I°(Q) := —G#(Q) — Binfg2 h, we have

1
lim sup N log M?V(C) < - irclf 1P + 3¢

N—o0

Since € > 0 was arbitrary, the claim follows:

1
lim sup N log ;L]‘i,(C) < — iréf 17

N—oo

We now prove the requested features of I°. Since Gﬁ, : S? — R is continuous
(Lemma , the pointwise limit G” is upper semi continuous, and hence
P =_GF— infg2 h is lower semi continuous. To show that I A >0, we prove
that
B _ .
G° < -0 lélzf h.

17
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Indeed, on account of [I5, Thm. 6.1.2] the smallest eigenvalue Ay of Hy(s)
converges to infg2 h. Hence, for each € > 0, we can find N large enough such
that

1 — .
GA(Q) <||1G% | INop = ~loge Y = —gAy = —Binfh+e.

In particular,
GP(Q) < —Binf h.

Furthermore I? is a good rate function, since S? is compact and sub-level
sets are closed.

We finally show that I” vanishes at the points minimizing the symbol h.
°(Q) = -GA(Q) — Binf h.

Furthermore, by the continuity of the bundle, Jensen’s inequality, and the
inequality G# < —finf h, the choice of such a z minimizing h leads to

ﬁ <Q, HN(S)Q>N

- Figfh= A = i -

1
. —BHn(s) — 1 B — B —Bi
< lim N log(Q, e PHNEIQ) i —]\}Hn Gy(Q) =G"(Q) < ﬁlélth, (16)

~ N—oo

O]

Remark 7. We point out that the set {I” = 0} = {2 | I’(2) = 0} contains
the minimum set of h. Indeed, on account of the proof of Theorem
particularly the final chain of inequalities, we know that for Q € {h =
infg2} = {2 | h(Q) = infg2 h}, it holds I(Q) = 0, and hence

{h=infh} C {1’ = 0}.

This implies that, even if the sequence of probability measures (ujﬁv) does
not converge, it still concentrates around the minimizers of h. [ ]

A Symmetric sequences

Let B be a unital C*-algebra, e.g. the matrix algebra My(C). The sym-
metrization operator my : BY — BV is defined as the unique linear contin-
uous extension of the following map on elementary tensors:

1
TN(a ® - ®an) ::ﬁ Z ar(1) &+ & ar(N)- (17)
" T€P(N)

18



Furthermore, for N > M we need to generalize the definition of Sy to give
a bounded operator W% : BM — BN defined by linear and continuous
extension of

™ b) =aybRI®---®@I), be B, (18)
N —Mtimes

A sequence (ay)y is called symmetric if there exist M € Nand aps € B®M
such that

an = M (ap) for all N > M, (19)

and quasi-symmetric if a5 = 7n(a;/y) if N € N, and for every € > 0,
there is a symmetric sequence (b; /) nen as well as M € N (both depending
on ¢€) such that

Hal/N—bl/NH <€ forall N > M. (20)
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