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Abstract

We prove a full large deviation principle for Gibbs measures arising in
the semiclassical limit of quantum spin Hamiltonians and provide an
explicit characterization of the associated rate function. In this limit,
the probability measures are shown to concentrate on the Riemann
sphere.

Introduction

Large deviation theory provides a rigorous framework for analyzing the prob-
abilities of rare events, capturing how these probabilities decay exponentially
in the limit of a small parameter [18]. It plays a central role in understand-
ing the concentration of measure phenomena and quantifying the asymptotic
behavior of sequences of probability measures. At the heart of this theory
lies the rate function, a non-negative, lower semicontinuous functional that
governs the exponential rate of decay. This function often admits an inter-
pretation analogous to entropy, reflecting the system’s fluctuations around
its typical behavior.

In statistical mechanics, large deviation principles (LDPs) have been
extensively developed for classical lattice spin systems, offering a powerful
tool for describing probabilistic behavior in the thermodynamic limit [2, 4].
This approach typically analyzes systems as the number of lattice sites or
the system volume increases. In contrast, the study of large deviations
in the thermodynamic limit of quantum spin systems remains relatively
underexplored: with only a few results available, as outlined, for instance,
in [5, 8, 12, 13] are available.
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Beyond the thermodynamic limit lies another crucial asymptotic regime:
the semi-classical limit, which describes the transition from quantum to
classical systems. This transition is mathematically captured by quanti-
zation theory, offering a rigorous framework in which quantum states are
approximated by probability measures on a classical phase space, with the
approximation governed by a suitable semiclassical parameter. A natural
and compelling question arises: can the rate at which a quantum system
approaches its classical counterpart be described within the large deviation
framework?

This work directly addresses this question. We focus on the equilibrium
states of quantum spin systems, described by the Gibbs state associated
with a quantum spin Hamiltonian. These states are parametrized by the
spin quantum number N ∈ N = {1, 2, 3, . . . }, which serves as an effective
semiclassical parameter. Our objective is to establish an LDP for the en-
suing probability measures and to characterize the rate of convergence as
N → ∞. By doing so, we aim to bridge the gap between quantum statistical
mechanics and large deviation theory, offering new insights into the semi-
classical behavior of quantum spin systems.

Acknowledgements. The first author acknowledges the financial support
of the DFG which supported the research and thanks Chokri Manai for sug-
gestions on the literature. The second author acknowledges the support of
Gandalf Lechner and Jean-Bernard Bru.

Spin coherent states

We denote the algebra of bounded operators on CN+1 by B(CN+1) ≃
MN+1(C), and the associated operator norm by ∥ · ∥op,N . We consider a
single quantum spin of fixed total angular-momentum N := 2J ∈ N and
denote by S = (S1, S2, S3) the usual angular momentum operators acting
on the (N + 1)-dimensional complex Hilbert space CN+1, that is

[S1, S2] = iS3, and cyclically,

S± = S1 ± iS2.

and
S2 = S2

1 + S2
2 + S2

3 = N

2

(
N

2 + 1
)

I,

where I always denotes the unit of MN+1(C) for any N . In other words,
N
2

(
N
2 + 1

)
is the eigenvalue corresponding to the operator S2.

Analogously, as observed by E. Majorana [9], we may view a single-particle
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quantum spin system of spin J = N/2 as a collective spin system of N spin-
1
2 particles, subject to permutation invariance. Equivalently, the Hilbert
space CN+1 carrying the spin-J = N/2 representation is isomorphic to the
symmetric subspace

Hs
N := SymN (C2) ⊂

N⊗
C2 =: HN ,

and the angular momentum operators (S1, S2, S3) correspond to restrictions
of the canonical generators T = (T1, T2, T3) of the N -fold tensor product
representation of the Lie-algebra su(2), i.e.

Tµ =
N∑

k=1
T (k)

µ , µ = 1, 2, 3, (1)

with T
(k)
µ acting as the spin Pauli matrix tµ := 1

2σµ on the k-th tensor factor
and as the identity on all others. These therefore define bounded operators
on HN , i.e. Tµ ∈ B(HN ). In particular, by permutation invariance

Sµ
∼= Tµ

∣∣
Hs

N
, µ = 1, 2, 3,

where ∼= should be understood in the sense of unitary equivalence. Note
also that Tµ leaves Hs

N invariant.
On the classical side, we consider the one-point compactification of the

complex plane, commonly known as the Riemann sphere S2. This space can
be identified with the complex projective line which naturally carries the
structure of a compact Kähler manifold, and can therefore be interpreted as
the “physical phase space”. This allows the notion of coherent spin states,
introduced in what follows.

Let Ω = (θ, ϕ), has polar angles θ ∈ (0, π), ϕ ∈ [0, 2π). Let |↑⟩, |↓⟩ be
the normalized eigenvectors of σ3 in C2, so that

σ3|↑⟩ = |↑⟩, σ3|↓⟩ = −|↓⟩,

and consider the unit Bloch vector

|Ω⟩1 = cos
(

θ
2

)
|↑⟩ + eiϕ sin

(
θ
2

)
|↓⟩ ∈ C2. (2)

For N ∈ N, we define N-coherent spin vector |Ω⟩N ∈ Hs
N , equipped with

the usual scalar product inherited from HN , as

|Ω⟩N = |Ω⟩1 ⊗ · · · ⊗ |Ω⟩1︸ ︷︷ ︸
N times

. (3)

It is not difficult to see that the map S2 ∋ Ω 7→ |Ω⟩1 ∈ C2 lacks continuity at
the north pole Ω0 := (0, ϕ) and south pole Ωπ = (π, ϕ), where ϕ ∈ [0, 2π) is
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arbitrary. Nonetheless, continuity is preserved at the level of scalar products.
To demonstrate this, for 0 ≤ M ≤ N we introduce the Dicke state

|M⟩ = |M ↓, (N − M) ↑⟩

which corresponds to the normalized symmetric vector with M spins in |↓⟩
and N − M spins in |↑⟩ [14, Chapter 7]. The following lemma establishes
this property.
Lemma 1: Let A ∈ B(Hs

N ). Then the map

S2 −→ R, Ω 7−→ ⟨Ω|A|Ω⟩N

is continuous. In particular, for Ω0 := (0, ϕ), Ωπ := (π, ϕ) and ϕ ∈ [0, 2π)
arbitrary

⟨Ω0|A|Ω0⟩N ≡ lim
Ω→Ω0

⟨Ω|A|Ω⟩N = ⟨0|A|0⟩N ;

⟨Ωπ|A|Ωπ⟩N ≡ lim
Ω→Ωπ

⟨Ω|A|Ω⟩N = ⟨N |A|N⟩N ,

Proof. The spin-N coherent (Bloch) states can be expressed in the Dicke
basis as

|Ω⟩N =
N∑

M=0

(
N

M

)1/2 (
cos θ

2

)N−M (
sin θ

2

)M

e iMϕ |M⟩, (4)

where Ω = (θ, ϕ) ∈ S2. By direct inspection, for any bounded operator A ∈
B(Hs

N ), the expectation value ⟨Ω|A|Ω⟩N is continuous on S2\{(0, ϕ), (π, ϕ)}.
In the limit Ω → Ω0 := (0, ϕ) (i.e. θ → 0), we have cos(θ/2) → 1, sin(θ/2) →
0. Therefore, in the expansion (4), all terms with M ≥ 1 vanish, and the
only surviving contribution is that of M = 0. Hence,

lim
Ω→Ω0

⟨Ω|A|Ω⟩N = ⟨0|A|0⟩N ,

which corresponds to the fully polarized Dicke state with all spins up. Sim-
ilarly, in the limit Ω → Ωπ, we have cos(θ/2) → 0, sin(θ/2) → 1. Therefore,
in the expansion (4), all terms with M ≤ N − 1 vanish, and the only sur-
viving contribution is that of M = N . Hence,

lim
Ω→Ωπ

⟨Ω|A|Ω⟩N = ⟨N |A|N⟩N ,

which corresponds to the fully polarized Dicke state with all spins down.
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Berezin maps

For a bounded function f : S2 → C, we denote the usual supremum norm
by ∥f∥∞. When f ∈ C(S2) is continuous, we define the Berezin maps by

QN : C(S2) → B(Hs
N ), f 7−→ N + 1

4π

∫
S2

dΩf(Ω)|Ω⟩⟨Ω|N ,

where dΩ the unique SO(3)-invariant Haar measure on the unit sphere S2,
normalized such that

∫
S2 dΩ = 4π. The operator |Ω⟩⟨Ω|N is the one dimen-

sional projection onto the subspace spanned by the N -coherent spin vectors,
cf. (3). This structure moreover yields, with I being the identity operator
on Hs

N [11]:

I = N + 1
4π

∫
S2

dΩ|Ω⟩⟨Ω|N ,

f(Ω) = lim
N→∞

N + 1
4π

∫
S2

dΩ′f(Ω′)|⟨Ω|Ω′⟩N |2.

Quantum spin Hamiltonians

As mentioned above, a single particle quantum spin system may be inter-
preted as a symmetric tensor product of matrices, restricted to the invari-
ant subspace Hs

N . To clarify this interpretation, we now present a concise
overview.

Let t1 = σ1/2, t2 = σ2/2, t3 = σ3/2 be the spin-1
2 operators. For a

multi-index α = (α1, α2, α3) ∈ N3
0 with |α| = α1 + α2 + α3 = L, consider the

L-fold tensor

t1 ⊗ · · · ⊗ t1︸ ︷︷ ︸
α1

⊗ t2 ⊗ · · · ⊗ t2︸ ︷︷ ︸
α2

⊗ t3 ⊗ · · · ⊗ t3︸ ︷︷ ︸
α3

.

Its fully symmetric version is obtained by applying the normalized sym-
metrization operator SL:

tα := πL
L

(
t1 ⊗ · · · ⊗ t1︸ ︷︷ ︸

α1

⊗ t2 ⊗ · · · ⊗ t2︸ ︷︷ ︸
α2

⊗ t3 ⊗ · · · ⊗ t3︸ ︷︷ ︸
α3

)
,

where πL
L is defined by Eq. (18) in the Appendix. Each symmetric tensor tα

can be uniquely identified with the monomial [7, Lemma 3.2]

pα(x1, x2, x3) = xα1
1 xα2

2 xα3
3 .

The corresponding symmetric sequence in the N -spin algebra is then defined,
for N ≥ L, as

a
(pα)
N := πL

N (tα), (5)
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where πL
N is the embedding map defined in Eq. (18). A general polynomial

of degree K,

h(x1, x2, x3) =
K∑

L=0

∑
|α|=L

cα xα1
1 xα2

2 xα3
3 ,

with coefficients cα ∈ C, corresponds to the symmetric sequence

a
(h)
N :=

K∑
L=0

∑
|α|=L

cα a
(pα)
N .

Hence, by defining
H̄N := a

(h)
N

we generate a scaled mean-field quantum spin Hamiltonian H̄N . This oper-
ator canonically acts on HN , but leaves the symmetric subspace Hs

N invari-
ant. In particular, by restricting H̄N to Hs

N , we get an operator defined on
an (N + 1)-dimensional Hilbert space. The single particle quantum spin
Hamiltonian is then defined by

Hs
N := NH̄N |Hs

N
, (6)

so that ∥Hs
N ∥N,op = O(N). From a physical perspective, this implies that

the spectral radius scales with the dimension of the underlying space.
Remark 2. To see that the symmetrizer indeed produces a physically mean-
ingful model, we first consider an example. Let T = (T1, T2, T3) be the
operators defined in (1). Then

Ti = N π1
N (ti),

so that, when restricted to the symmetric subspace,
Ti

∣∣
Hs

N
= N π1

N (ti)
∣∣
Hs

N
.

More generally, for any polynomial h in three real variables, the operator

h
( 2

N
T
)

seen as polynomial in the three non-commutative averages satisfies∥∥∥h( 2
N

T
)∣∣

Hs
N

− H̄s
N

∥∥∥
op,N

= O
( 1

N

)
, N → ∞,

where H̄s
N = Hs

N /N is defined above. This explicitly confirms several obser-
vations done in [6]. Moreover, as a consequence of [11, Thm. 2.3] and [17],
one has the following identification with Berezin quantization, i.e.∥∥H̄s

N − QN (h|S2)
∥∥

op,N
= O

( 1
N

)
, N → ∞,

where h|S2 denotes the restriction of the polynomial h to the unit sphere
S2. Hence, the operators h( 2

N T )
∣∣
Hs

N
and QN (h|S2) can be seen as (scaled)

quantum spin Hamiltonians representing H̄s
N . ■
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Classical limit

Let (Hs
N ) be a sequence of quantum spin Hamiltonians in B(Hs

N ) that satisfy
(6). The local Gibbs state ωβ

N at inverse temperature β > 0 is defined by

ωβ
N (A) := Tr[e−βHs

N A]
Tr[e−βHs

N ]
, A ∈ B(Hs

N ).

By direct inspection, one sees that the Berezin map QN is strictly positive
(see also [11, 15]), so that the local Gibbs state ωβ

N at inverse temperature
β > 0 induces a positive linear normalized functional (i.e., a state) on S2,
via

ϱβ
N := ωβ

N ◦ QN .

As a matter of fact, plugging in the definition of ωβ
N , this now reads

ϱβ
N (f) := Tr[e−βHs

N QN (f)]
Tr[e−βHs

N ]
.

By definition of the Berezin map QN , the state ϱβ
N in turn corresponds with

a probability measure µβ
N on S2, which assumes the following form

µβ
N (U) = N + 1

4π

∫
U

dΩ⟨Ω|e−βHs
N |Ω⟩

Tr[e−βHs
N ]

,

where U ⊆ S2 is a measurable Borel set.

As is known [16, Prop. 4.11], for f ∈ C(S2) arbitrary, the free energy (or
pressure) for the function h given above is

F β
h,f : R −→ R, t 7−→ lim

N→∞

1
N

log Tr
(
e−β(Hs

N +tNQN (f))
)

exists for all t ∈ R. In particular, F β
h,f is given by

F β
h,f (t) = − inf

Ĉ
(βh + tf) .

On account of [16, Cor. 4.8], the existence of the classical limit

ϱβ(f) := lim
N→∞

ϱβ
N (f)

is guaranteed provided in addition that F β
h,f is differentiable at t = 0. In

that case, the classical limit is given by

ϱβ(f) = d

dt

∣∣∣∣
t=0

F β
h,f (t).

7



Indeed, differentiability is guaranteed only in very specific cases [3, 6, 10,
15, 17]. In other words, the classical limit generally does not exist, and this
is not an assertion we make.

Nonetheless, one can still attempt to characterize the asymptotic behav-
ior of the sequence of measures µβ

N . The physical intuition to keep in mind is
that the measures concentrate on a suitable subset of the phase space S2 and
outside these sets, they decay exponentially. A central and intriguing ques-
tion is to determine the precise rate at which this decay occurs. This rate
encapsulates the nature of quantum fluctuations and appears to be amenable
to rigorous computation. The appropriate mathematical framework for cap-
turing such behavior is provided by the theory of large deviations, which will
be introduced in the following section.

Principle of large deviations

Below the definition of a large deviation principle is presented.

Definition 3 (LDP). A sequence of probability measures (µN )N∈N on a Pol-
ish space X equipped with the Borel Σ-algebra satisfies a large deviation
principle (LDP) with a good rate function I : X → [0, ∞], if

(i) I has compact sub-level sets {x ∈ X | I(x) ≤ k} for all k ∈ [0, ∞),

(ii) for all compact C ⊆ X,

lim sup
N→∞

1
N

log µN (C) ≤ − inf
C

I,

(iii) for all open O ⊆ X,

lim inf
N→∞

1
N

log µN (O) ≥ − inf
O

I.

Main result

Our main result is the following. Recall the measures µβ
N defined for a se-

quence of self-adjoint Hamiltonians (Hs
N ) and β > 0, defined for measurable

subsets U of X = S2 as

µβ
N (U) = N + 1

4π

∫
U

dΩ⟨Ω|e−βHs
N |Ω⟩N

Tr[e−βHs
N ]

.

Theorem 4: Let a sequence of Hamiltonians (HN (s))N assuming the form
(6) for h a polynmomial in Ω be given. Then, the sequence of probability
measures (µβ

N ) satisfies a large deviation principle with a good rate function
Iβ : S2 −→ [0, ∞)

Iβ(Ω) := −Gβ(Ω) − β inf
S2

h,
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where Gβ is given by the limit

Gβ(Ω) := lim
N→∞

1
N

log ⟨Ω|e−βHs
N |Ω⟩N

for all Ω ∈ S2.

Before proving the theorem we shortly explain the strategy of the proof
to aid the reader. Our strategy is to write the probability measure µβ

N as

dµβ
N (Ω) = N + 1

4π

eNGβ
N (Ω)

Tr[e−βHs
N ]

,

where
Gβ

N (Ω) := 1
N

log ⟨Ω|e−βHN (s)|Ω⟩N .

We will then prove that approximate NGβ
N is almost sub-additive. To this

avail, we first take pα to be a homogeneous monomial of degree L0, i.e.
pα(x1, x2, x3) = xα1

1 xα2
2 xα3

3 , where |α| = L0. As seen above, this monomial
corresponds to a symmetrized tensor of the form

tα := πL0
L0

(
t1 ⊗ · · · ⊗ t1︸ ︷︷ ︸

α1

⊗ t2 ⊗ · · · ⊗ t2︸ ︷︷ ︸
α2

⊗ t3 ⊗ · · · ⊗ t3︸ ︷︷ ︸
α3

)
,

and the associated symmetric sequence is

a
(pα)
N = πL0

N (tα).

Let us abbreviate
as

N ≡ apα

N |Hs
N

= πL0
N (tα)|Hs

N
.

We can now phrase our result in the following general form. For N, M ≥ L0
consider the π-sequences (monomials)

aN := πL0
N (tα); as

N := πL0
N (tα)|Hs

N
;

aM := πL0
M (tα); as

M := πL0
M (tα)|Hs

M
;

aN+M := πL0
N+M (tα); as

N+M := πL0
N+M (tα)|Hs

N+M
.

This leads to the following lemma.
Lemma 5: With the notation introduced above, for all N, M ≥ L0, it holds

⟨Ω, e(N+M)as
N+M Ω⟩N+M ≤ C⟨Ω, eNas

N Ω⟩N ⟨Ω, eMas
M Ω⟩M , (7)

for some constant C = C(L0, N, M) with C ≥ 1 and C = O(1), as N, M →
∞. In particular,

lim
N→∞

1
N

log ⟨Ω, eNas
N Ω⟩N = inf

N

1
N

log ⟨Ω, eNas
N Ω⟩N . (8)
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Proof. We start with the following observation. Restricting the symmetric
sequence (aN ) to Hs

N corresponds to the operator aN pN , where pN is an
orthogonal projection onto Hs

N . Since the coherent state |Ω⟩N ∈ Hs
N , and

aN leaves Hs
N = ran(pN ) invariant, it follows that

⟨Ω, eNaN Ω⟩N = ⟨Ω, eNas
N Ω⟩N ,

i.e., it does not matter whether we restrict the symmetric sequence aN to
Hs

N or not. This allows us to work directly with the sequence (aN ), and
prove (7) for aN .

Now we consider right-hand side of (7). We first observe, for any matrices
aN ∈ BN and bM ∈ BM , it holds

eaN ⊗ ebM = (eaN ⊗ 1M )(1N ⊗ eNbM ) = eaN ⊗1M e1N ⊗bM = eaN ⊗1M +1N ⊗bM .

If we apply the product state |Ω⟩N+M , one finds

⟨Ω, eaN Ω⟩N ⟨Ω, ebM Ω⟩M = ⟨Ω, eaN ⊗1M +1N ⊗bM Ω⟩N+M

We use the following identity: for all N, M ≥ L0

aN+M = πL0
N+M (tα) = πN+M (πL0

N (tα) ⊗ 1M ) = πN+M (aN ⊗ 1M )
= πN+M (aN ⊗ 1M ) = πN+M (1N ⊗ πL0

M (tα)).

This implies that for symmetric sequences (aN )N ,

πN+M (aN ⊗ 1M + 1N ⊗ aM ) = 2aN+M ,

In particular,

πN+M (NaN ⊗ 1M + 1N ⊗ MaM ) = (N + M)aN+M .

Therefore, the first assertion (7) holds true whenever there exists a bounded
constant C = C(N, M, L0) with C ≥ 1 and C = O(1), such that

⟨ΩN+M , eπN+M (NaN ⊗1M +1N ⊗MaM )ΩN+M ⟩
≤ C⟨ΩN+M , eNaN ⊗1M +1N ⊗MaM ΩN+M ⟩, (9)

whenever N, M ≥ L0. To prove (9), let us denote by

X := NaN ⊗ 1M + 1N ⊗ MaM .

In this notation, (9) reads

⟨Ω, eπN+M (X)Ω⟩N+M ≤ C⟨Ω, eXΩ⟩N+M .
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We first prove the following claim.
Claim:
The symmetrization over the full permutation group G := SN+M satisfies

πN+M (X) = αX(L0, N, M) X + RX ,

where αX(L0, N, M) is a coefficient and RX denotes the interaction terms,
i.e., the components of the symmetrized operator that do not preserve the
tensor block structure of X. More precisely, there exists an L0, N, M -
dependent constant E(L0, N, M), cf. (11) below, such that

• RX has norm bounded by

∥RX∥ ≤ E(L0, N, M) (N + M)

• The coefficients αX(L0, N, M) satisfy

αX(L0, N, M) = 1 − E(L0, N, M) → 1

uniformly as N, M → ∞.

Proof:
We can group the total number of permutations in G as follows:

(I) permutations that only act on the N -block, not acting on the M -block;

(II) permutations that do not act on the N -block, acting only on the M -
block;

(III) permutations that only permute identities between the N and M
block, keeping the non-trivial tensors untouched;

(IV) permutations that only interchange non-trivial tensors between the N
and M blocks, leaving the identities untouched.

In this way, αX(L0, N, M) corresponds to the number of permutations in
G that leave the operator X invariant, i.e. to group (I),(II) and (III). The
interaction terms (group IV) arise from permutations that map at least one
nontrivial operator ai originally supported in the N -block into the M -block,
or vice versa, while at least one other nontrivial operator remains in the
N -block. By assumption, since L0 is the total number of nontrivial tensor
factors in X, the number of permutations corresponding to such interactions
is

L0−1∑
k=1

(
M

k

)(
L0
k

)
k!,

where
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•
(M

k

)
counts the ways to assign k nontrivial operators to the M -block,

•
(L0

k

)
counts the ways to pick k nontrivial operators out of the L0.

The extreme cases k = 0 and k = L0 are excluded since they correspond to
all nontrivial operators residing entirely within one block, thus preserving
the form of X and not contributing to interactions. Similarly, the contri-
bution from permutations originally assigning nontrivial operators in the
M -block and mapping some into the N -block is given by

L0−1∑
k=1

(
N

k

)(
L0
k

)
k!.

Their total is bounded above by

L0−1∑
k=1

(
M

k

)(
L0
k

)
k! +

L0−1∑
k=1

(
N

k

)(
L0
k

)
k! ≤ C(L0)

(
N + M

L0

)
, (10)

where the last inequality follows from the Vandermonde identity and C(L0)
only depends on L0, not on M and N . Hence, the total fraction of the
interaction terms in the symmetrization is given by

E(L0, N, M) := 1
|G|

L0−1∑
k=1

(
M

k

)(
L0
k

)
k! + 1

|G|

L0−1∑
k=1

(
N

k

)(
L0
k

)
k!. (11)

≤ C(L0)
L0!(N + M − L0)! , (12)

As a result, we indeed have the following decomposition

πN+M (X) = αX(L0, N, M)X + RX .

Note that indeed,

• X has norm bounded by ∥X∥ ≤ N + M due to its prefactors N and
M and the fact that the tα are bounded by one;

• RX collects the interaction terms of norm bounded by ∥RX∥ ≤ E(L0, N, M)(N+
M);

• α(L0, N, M) = 1 − E(L0, N, M) → 1, uniformly as N, M → ∞.

This proves the claim. ■

To continue our prove we use Duhamel’s integral formula, stating that for
any square matrices A and B

eA+B − eA =
∫ 1

0
e(1−s)ABes(A+B)ds.
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In particular, for the choices A = X, B = RX , and α = αX(L0, N, M), we
set C = (α − 1)A + B and obtain the following estimate

∥eπN+M (X) − eX∥ = ∥eαA+B − eX∥ ≤
∫ 1

0
∥e(1−s)ACes(A+C)∥ds ≤∫ 1

0
∥e(1−s)ACes(A+C)∥ds ≤ ∥C∥e∥A∥+∥C∥.

By the previous claim, e∥A∥+∥C∥ = O(eN+M ), ∥B∥ = O( N+M
(N+M−L0)!) and

1 − α = E(L0, N, M) = O( 1
(N+M−L0)!). It follows that

γ(L0, N, M) := ∥C∥e∥A∥+∥C∥

≤ (E(L0, N, M)∥A∥ + ∥B∥)e∥A∥+∥C∥

= O

(
N + M

(N + M − L0)!

)
O(eN+M ) → 0, (N, M → ∞).

By Cauchy Schwarz,∣∣∣∣⟨Ω, eπN+M (X)Ω⟩N+M − ⟨Ω, eXΩ⟩N+M

∣∣∣∣ ≤ ∥eπN+M (X) − eX∥ ≤ γ(L0, N, M),

so that

⟨Ω, eπN+M (X)Ω⟩N+M ≤ ⟨Ω, eXΩ⟩N+M + γ(L0, N, M)

= ⟨Ω, eXΩ⟩N+M

(
1 + γ(L0, N, M)

⟨Ω, eXΩ⟩N+M

)
for all N, M ≥ L0. If we set

C(L0, N, M) := 1 + 2γ(N, M, L0)
⟨Ω, eXΩ⟩N+M

(13)

then
C(L0, N, M) → 1,

as N, M → ∞ uniformly, since the denominator decays at worst exponen-
tially, whilst the numerator decays super-exponentially (see above). If we
set

C := sup
N,M≥L0

C(L0, N, M),

then 1 ≤ C < ∞ uniformly in N, M . This concludes the proof of equation
(9).

To prove (8) we rely on Fekete’s theorem. To this avail, let us abbrevi-
ate

zN := log ⟨Ω, eNaN Ω⟩N .

13



From (9), the sequence (zN )N∈N satisfies

zM+N ≤ log C + zM + zN ,

for some bounded constant with log C ≥ 0 and all M, N ≥ L0. Moreover,
by Jensen’s inequality,

zN

N
≥ ⟨Ω, aN Ω⟩N .

The limit of the right-hand side exists as N → ∞: it corresponds to the
polynomial pK(Ω), see e.g. [15]. As a result, the sequence ( zN

N )N is bounded
from below. We now claim that the limit

lim
N→∞

zN

N
= inf

N∈N

zN

N

actually exists. To see this, define the sequence vN := log C + zN . Then

vM+N = log C + zM+N ≤ log C + (log C + zM + zN ) = vM + vN .

Thus, (vN )N is subadditive. We may apply Fekete’s lemma, and conclude
that the limit

L := lim
N→∞

vN

N
= inf

N∈N

vN

N

exists. This implies that

lim
N→∞

zN

N
= lim

N→∞

(
vN

N
− log C

N

)
= L.

Clearly, |L| < ∞, since ( zN
N ) is bounded from below by a converging se-

quence. This proves the lemma.

The following result extends the previous lemma to generic polynomials
in three real variables.
Corollary 6: Let h be polynomial of degree K,

h(x1, x2, x3) =
K∑

L=0

∑
|α|=L

cα xα1
1 xα2

2 xα3
3 ,

with coefficients cα ∈ C, and consider the ensuing mean-field quantum spin
Hamiltonian Hs

N , as defined by (6). Then, for all N, M ≥ K it holds

⟨Ω, eHs
N+M Ω⟩N+M ≤ C⟨Ω, eHs

N Ω⟩N ⟨Ω, eHs
M Ω⟩M ,

for some bounded constant C ≥ 1 depending on K, but not on N and M .
In particular,

lim
N→∞

1
N

log ⟨Ω, eHs
N Ω⟩N = inf

N

1
N

log ⟨Ω, eHs
N Ω⟩N . (14)

14



Since the proof goes in an exact similar way as the one in Lemma 5, it
is omitted.

Proof of Theorem 4. For the lower bound we proceed as follows. for any
measurable (open) set U ⊂ S2 it holds

1
N

log µβ
N (U) = 1

N
log N + 1

π
+ 1

N
log

∫
U

dΩeNGβ
N (Ω) − 1

N
log Tr[e−βHN (s)]

Taking the liminf yields

lim inf
N→∞

1
N

log µβ
N (U) = lim inf

N→∞

1
N

log
∫

U
dΩeNGβ

N (Ω) + β inf
S2

h

On account of Lemma 5, for all N ∈ N and Ω ∈ S2 it holds Gβ
N (Ω) ≥ Gβ(Ω),

and so is eNGβ
N (Ω) ≥ eNGβ(Ω) for any Ω. Integrating both sides over U with

respect to the (normalized) measure dΩ gives

1
N

log
∫

U
dΩeNGβ

N (z) ≥ 1
N

log
∫

U
dΩeNGβ(Ω).

We set
Iβ(Ω) := −Gβ(Ω) − β inf

S2
h,

which is lower-semi continuous, since Gβ(Ω) is upper semi continuous. By
Laplace Principle, the right-hand side satisfies

lim
N→∞

1
N

log
∫

U
dΩeNGβ(Ω) = sup

U
(Gβ) = − inf

U
(−Gβ),

Therefore, we obtain

lim inf
N→∞

1
N

log µβ
N (U) ≥ − inf

U
Iβ

implying the lower bound of the claim.

To prove the upper bound we proceed as follows. Fix ε > 0 and C ⊂ S2

compact. Since Gβ(Ω) = infN Gβ
N (Ω), for each Ω ∈ C there exists NΩ ∈ N

such that
Gβ

NΩ
(Ω) ≤ Gβ(Ω) + ε.

Because each Gβ
N is continuous on S2, for every Ω ∈ C we can find an open

neighborhood VΩ of Ω such that

sup
Ω′∈VΩ

Gβ
NΩ

(Ω′) ≤ Gβ
NΩ

(Ω) + ε ≤ Gβ(Ω) + 2ε ≤ sup
Ω∈C

Gβ(Ω) + 2ε
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The family {VΩ : Ω ∈ C} covers C. By compactness, choose a finite subcover
VΩ1 , . . . , VΩm with associated integers NΩ1 , . . . , NΩm . For each i = 1, . . . , m
we then have

sup
Ω∈VΩi

Gβ
NΩi

(Ω) ≤ sup
Ω∈C

Gβ(Ω) + 2ε.

Let N0 denote a common multiple of NΩ1 , . . . , NΩm , e.g. their least common
multiple. For each i there exists ki ≥ 1 such that N0 = kiNΩi . Let us
furthermore write G̃β

N0
(Ω) := Gβ

N0
(Ω) Using sub-additivity repeatedly (as

in the proof of the Lemma 5 with constant C0 > 0) we obtain, for every
Ω ∈ S2 and each i,

G̃β
N0

(Ω) ≤ kiG̃
β
NΩi

(Ω) + ki log C0,

and hence, dividing by N0,

Gβ
N0

(Ω) ≤ Gβ
NΩi

(Ω) + max
1≤i≤m

log C0
NΩi

Because the sets VΩ1 , . . . , VΩm cover C, for every Ω ∈ C there exists i such
that Ω ∈ VΩi . For such Ω we have

Gβ
N0

(Ω) ≤ sup
Ω′∈VΩi

Gβ
NΩi

(Ω′) + log C0
NΩi

Using the previous estimate supVΩi
Gβ

NΩi
≤ supC Gβ + 2ε, we obtain

Gβ
N0

(Ω) ≤ sup
C

Gβ + 2ε + max
1≤i≤m

log C0
NΩi

.

Now fix N ≥ N0 and write N = kN0 +r with 0 ≤ r ≤ N0 −1. Sub-additivity
gives, for all Ω ∈ S2,

G̃β
N (Ω) ≤ G̃β

kN0
(Ω) + G̃β

r (Ω) + log C0,

and again,
G̃β

kN0
(Ω) ≤ kG̃β

N0
(Ω) + (k − 1) log C0.

Combining both and exponentiating yields, for every Ω ∈ C,

eNGβ
N (Ω) = eG̃β

N (Ω) ≤ e
kG̃β

N0
(Ω)

eG̃β
r (Ω) ek log C0 .

Using the bound Gβ
N0

(Ω) ≤ supC Gβ + 2ε + max1≤i≤m
log C0
NΩi

valid on C, we
get

eNGβ
N (Ω) ≤ e

kN0(supC Gβ+2ε+max1≤i≤m
log C0
NΩi ) eG̃β

r (Ω) ek log C0 .

16



Integrating over C, taking logarithms, and dividing by N = kN0 + r gives

1
N

log
∫

C
eNGβ

N (Ω) dΩ ≤ 1
kN0 + r

log
∫

C
eG̃β

r (Ω) dΩ + sup
C

Gβ + 2ε + max
1≤i≤m

log C

NΩi

+ log C

N0
(15)

The first term on the right-hand side of (15) is bounded by

1
kN0 + r

(
log Vol(C) + ∥G̃β

r ∥∞
)
,

which vanishes as k → ∞ because r ≤ N0 −1 is fixed. Hence letting N → ∞
(equivalently k → ∞ with fixed N0) we find

lim sup
N→∞

1
N

log
∫

C
eNGβ

N (Ω) dΩ ≤ sup
C

Gβ + 2ε + max
1≤i≤m

log C

NΩi

+ log C

N0

Choose the NΩi sufficiently large such that max1≤i≤m
log C
NΩi

< ε. Then, since
N0 ≥ NΩi , also log C

N0
< ε. Thus

lim sup
N→∞

1
N

log
∫

C
eNGβ

N (Ω) dΩ ≤ sup
C

Gβ + 3ε.

Recalling the definition of the probability measure

µβ
N (C) = 1

Tr[e−βHs
N ]

∫
C

eNGβ
N (Ω) dΩ,

we obtain
lim sup

N→∞

1
N

log µβ
N (C) ≤ sup

C
Gβ + β inf

S2
h + 3ε.

Defining the rate function Iβ(Ω) := −Gβ(Ω) − β infS2 h, we have

lim sup
N→∞

1
N

log µβ
N (C) ≤ − inf

C
Iβ + 3ε.

Since ε > 0 was arbitrary, the claim follows:

lim sup
N→∞

1
N

log µβ
N (C) ≤ − inf

C
Iβ.

We now prove the requested features of Iβ. Since Gβ
N : S2 → R is continuous

(Lemma 1), the pointwise limit Gβ is upper semi continuous, and hence
Iβ = −Gβ − infS2 h is lower semi continuous. To show that Iβ ≥ 0, we prove
that

Gβ ≤ −β inf
S2

h.
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Indeed, on account of [15, Thm. 6.1.2] the smallest eigenvalue λN of H̄N (s)
converges to infS2 h. Hence, for each ϵ > 0, we can find N large enough such
that

Gβ
N (Ω) ≤ ||Gβ

N ||N,op = 1
N

log e−βNλN = −βλN = −β inf
S2

h + ϵ.

In particular,
Gβ(Ω) ≤ −β inf

S2
h.

Furthermore Iβ is a good rate function, since S2 is compact and sub-level
sets are closed.

We finally show that Iβ vanishes at the points minimizing the symbol h.

Iβ(Ω) = −Gβ(Ω) − β inf
S2

h.

Furthermore, by the continuity of the bundle, Jensen’s inequality, and the
inequality Gβ ≤ −β inf h, the choice of such a z minimizing h leads to

− β inf
S2

h = −βh(Ω) = lim
N→∞

− β

N
⟨Ω, HN (s)Ω⟩N

≤ lim
N→∞

1
N

log⟨Ω, e−βHN (s)Ω⟩N = lim
N→∞

Gβ
N (Ω) = Gβ(Ω) ≤ −β inf

S2
h, (16)

Remark 7. We point out that the set {Iβ = 0} = {z | Iβ(z) = 0} contains
the minimum set of h. Indeed, on account of the proof of Theorem 4,
particularly the final chain of inequalities, we know that for Ω ∈ {h =
infS2} = {z | h(Ω) = infS2 h}, it holds Iβ(Ω) = 0, and hence

{h = inf
S2

h} ⊆ {Iβ = 0}.

This implies that, even if the sequence of probability measures (µβ
N ) does

not converge, it still concentrates around the minimizers of h. ■

A Symmetric sequences

Let B be a unital C∗-algebra, e.g. the matrix algebra M2(C). The sym-
metrization operator πN : BN → BN is defined as the unique linear contin-
uous extension of the following map on elementary tensors:

πN (a1 ⊗ · · · ⊗ aN ) := 1
N !

∑
τ∈P(N)

aτ(1) ⊗ · · · ⊗ aτ(N). (17)
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Furthermore, for N ≥ M we need to generalize the definition of SN to give
a bounded operator πM

N : BM → BN , defined by linear and continuous
extension of

πM
N (b) := πN (b ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

N−Mtimes

), b ∈ B⊗M . (18)

A sequence (aN )N is called symmetric if there exist M ∈ N and aM ∈ B⊗M

such that

aN = πM
N (aM ) for all N ≥ M, (19)

and quasi-symmetric if a1/N = πN (a1/N ) if N ∈ N, and for every ϵ > 0,
there is a symmetric sequence (b1/N )N∈N as well as M ∈ N (both depending
on ϵ) such that

∥a1/N − b1/N ∥ < ϵ for all N > M. (20)
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