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Abstract

This note presents a canonical construction of global observables -
sometimes referred to in the literature as macroscopic observables or
observables at infinity- in statistical mechanics, providing a unified
treatment of both commutative and non-commutative cases. Unlike
standard approaches, the framework is formulated directly in the C*-
algebraic setting, without relying on any specific representation.

1 Introduction

In the statistical mechanics of lattice systems, one typically studies large
collections of interacting particles arranged on a regular lattice, and the be-
havior of these systems in appropriate limiting regimes reveals their macro-
scopic properties. Two distinct types of such “infinite volume” limits are
commonly considered.

The first is the thermodynamic limit, in which the lattice size tends
to infinity while local observables are examined within finite regions of the
lattice. This limit is described by the so-called quasi-local algebra and allows
one to rigorously define expectation values of local quantities and ensures
that bulk properties, such as energy density or correlation functions, stabilize
in the infinite-volume system. Its significance is well established in the
context of phase transitions and equilibrium phenomena in quantum and
classical statistical mechanics [3, 14, [11].

The second, less standard but equally important, is what is sometime
referred to as macroscopic limit |2 [13], which focuses on observables that
are often called “global” or “observables at infinity,” such as spatial aver-
ages of local quantities over regions of diverging size [9, 10, 12]. Unlike
the thermodynamic limit, which addresses the stability of local observables
under volume growth, the macroscopic limit captures collective, non-local
behavior that reflects emergent classical features of quantum systems [7 [14].
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While this construction is classical in spirit and well established in statisti-
cal mechanics, its quantum counterpart is considerably less developed, often
requiring sophisticated representation-theoretic methods [3], 4].

In this work we develop a C*-algebraic framework to study the macro-
scopic behavior of statistical mechanical systems, providing a unified treat-
ment of both commutative and non-commutative settings. This approach
emphasizes the connection between quantum and classical systems and does
not require the use of any particular representation. In the non-commutative
setting, the resulting C*-algebra naturally contains commutative C*— sub-
algebras generated by macroscopic averages, thereby providing a bridge be-
tween classical thermodynamics as a limit of quantum statistical mechanics.
In the commutative case, it is proved that the ensuing C*—algebra can be
identified with the well-known algebra of o-tail measurable functions, un-
derscoring the significance of this construction.

C*-product and quotient algebra

Let T' € R? be a countable set. This already endows the set of finite subsets
of T" with a partial order (inclusion), which is upward directed and hence
defines a notion of convergence, namely “convergence along the net of finite
subsets of I', directed by inclusion”, that is

lim F(A) =«
AT

means that for every € > 0, there exists a finite subset K. C I' such that
|IF'(A) — a|| <e whenever K, C A.

Here, F' is a function (or operator) defined on finite subsets of I' and taking
values in a normed spaceﬂ

To each z € I' we associate a unital C*-algebra B,; in fact, we assume
the same algebra B for all x, and use x only to denote the lattice position.
The (minimal) tensor product of ®,c2 B, is denoted by B, and ensures that
B, is again a C*-algebra. We then consider the full C*-product [[,.r Ba
defined by

IT Ba == {(an)a | (lanlla)a € £2(T)}, (1)

Ael

where (a ) should be understood as element in the algebraic direct product
with pointwise operations. As it is well-known [1] [[pcr Ba is a C*-algebra

!This notion of convergence should not be confused with convergence in the sense of
van Hove.



with respect to sup norm [[(ap)alleo = sup|laalla. For (ap)a, (ba)a €
Ael
IIperBa, we introduce the following ~-equivalence relation

~ (b li —b =0. 2
(an)a (A)A<:>A1/H1FHGA Alla =0 (2)

For each given sequence (ap)a, we will denote by [ap]p := [(ap)a] the cor-
responding equivalence class with respect to . Moreover, the direct C*-
sum

D Ba: = {(an)a € I] Bal(llaalla)a € Co(T)} (3)

Ael Ael

={(a IS B lim |la =0 4
(o & I B Jim ol =0} @

is a closed two-sided ideal in [] 5 e B and thus we may consider the quotient

[Bl~ == ] Ba/ D Ba, (5)

Ael Ael

which is nothing but the space of ~-equivalence classes [ap] for bounded
sequences (ap)a, i.e.

[B]~ =q([] Ba)

Ael

where ¢ is the canonical quotient map,

q: [] Ba — I Ba/ P Ba. al(an)ser) = [(an)aerla.

Ael Aerl’ AeTl

Importantly, [B]~ is a C*-algebra with norm
[lan]allp). = limsup [laalla - (6)
AT

Hence, passing to the quotient makes it possible to identify sequences that
represent the same observable in the limit as A 7 T, so that only essentially
distinct observables are captured. Of course, [B].. is very large, so that one
typically focuses on suitable C*-sub algebras.

EXAMPLE 1 (Quasi-local algebra): We consider the %-algebra of local ob-
servables

BX = U Ba.
Ael

Here, we implicitly (injectively) embedded B, into the full C*- product

1] 24

Ael



by identifying an element by, € By, with a local sequence (by)aer defined
as

I by @ Lpa, A CA,
A 0, otherwise,

where 15\5/ denotes the identity in By\xr = ®zen\arBa-

The algebra B> is a sub-algebra of [] arer Ba. The quasi-local algebra is
then defined to be the completion of the quotient

B = g(B=) | € [B].,

where norm is given by |[ar]al[[pje = limsupy »r [laalla, which can be
shown to equal the actual limit. It is not difficult to see that [B]* is a C*-
subalgebra of [B]... The quasi-local algebra provides the standard framework
for describing the thermodynamic limit in statistical mechanics [3,4]. W

The C*-algebra [B]. contains many other elements for which the ex-
pectation value is not defined in several physically relevant states, such as
translation-invariant states. We give some examples of such sequences.

EXAMPLE 2: We consider the following sequences of tensor products of ma-
trices:

(1)
ap = ® ol

zEA

where o is the 1-component of the Pauli matrix at site x.
(ii)
1
0., x odd,
w-®{%

son 05, @ even.

(iii) Define a sequence (ap)p by partitioning T' into consecutive blocks
of strictly increasing lengths (By)n>0, assigning o® to even-indexed
blocks and o to odd-indexed blocks, and setting

ap = ®Aw, Ay =

zEA

{0“" if x is in an even-indexed block,
z

o*® if x is in an odd-indexed block.

For a translation-invariant state w, the limit

I
Al/rnrw(a/\)

is generally not defined for these sequences, because the product over in-
finitely many fluctuating operators diverges or oscillates.



C*-algebraic construction of global observables in
quantum statistical mechanics

We now construct another C*-sub-algebra of [B].. Let

€= (apn)r € [[ Ba:V (ba)a € B™, lim [|[an,ballla =07 .
Aer AT

LEMMA 3: C™ is a norm-closed *-subalgebra of [, By, and hence a C*-
algebra.

Proof. We must prove the following three conditions.

(1) *-algebra property: Let a = (ap)a,a’ = (a)y)a € € and b = (bp)s €
B>°. Then

l[a+d’,b] = [a,b]+[d’,b], [a*,b] = [a,b*]*, [ad’,b] = ald,b]+][a,b]d.

Since [|[ap, byl = 0 and ||[a@)y, ba]|| — O, the same holds for a +d', a*,
and aa’. Thus € is a *-subalgebra.

(2) Norm-closedness: Let (a(™) C € be a net that converges in the sup-
norm to a, i.e. [|a™ — afo — 0. Then for any b € B> and each
A,

I, balll < lllan—al”, bal [+l balll < 2lla—a™ oo [ball+lal”, balll

Taking the limit A " T" and then n — oo, the right-hand side goes to
0. Hence a € C*°.

(3) C*-property: Being a closed *-subalgebra of the C*-algebra [], Ba
with the sup-norm, C* is itself a C*-algebra.

O]

Consider the quotient

€] :=e>/ ) Ba = q(C™),
Aell

where ¢ is the canonical projection onto [B].. It follows that [C]* is a
C*-algebra, and .
(€] =[B]~ N (¢(B™)),

is the relative commutant of the x-algebra [B]*>® in the C*-algebra [B]., and
therefore norm-closed. Furthermore, we may define

Gj’f = (CLA/)A/ S H Bpar:V by € By, lim H[GA’abA]”A’ =0,
ANel AT



where by has to be understood as element of B, under the canonical em-
bedding. It then follows
e* =) ex.

Ael

Motivated by the pioneering ideas described in [9], Sec. 2.3.6], we introduce
the following definition.

DEFINITION 4: The C*-subalgebra [C]*> is called the algebra of global
observables. |

The C*-algebra [C]*° turns out to be non-commutative.

LEMMA 5: [C]* is non-commutative.
Proof. Consider the sequences (ap)a and (cp ), defined by
ap = 1p\(z0) ® Az, CA = 1A\ (24} ® Cay,

where a;, ,c;, are fixed non-commuting observables acting on site x5 € A,
i.e., local observables in By, }, such that [ag,,Ccz,] # 0. These sequences
are what we call “local sequences translated to infinity,” where x is chosen
so that xp —> oo as A 7T

For any local observable b € B, supported on a finite subset A’ € T,
define the sequence

by @ Lpa, A CA,
by =
0, otherwise.

Since ap acts non-trivially only on site xp which eventually is supported
outside A’ and b, acts non-trivially only on sites in A’, their supports are
disjoint for all sufficiently large A. Hence,

[apn,bp] =0 for all sufficiently large A.

['herefore,
lim bAlll =0
Al/‘FH[aAa A]H )

and similarly for c¢y. This shows
(aa)a, (ca)a € €.
By definition,
[an, ea] = (Ta\(ay} @ oy ) (a\(24} @ Cay) = (Tav(za} @ Cop) (Ta\(za} @ aay)-
Using standard tensor product properties, we find

[CLA,CA] = 1A\{xA} ® [a.Z‘A7cl‘A]'



Applying the operator norm, we obtain

e, eallla = [lfazy, cay ]Il

where the norm on the right-hand side does not depend on A. Recall that
the norm on the quotient algebra [C]*° is defined as

[a, c]l[jgee := limsup [|[an, ca]|l-
AT

Since ||[ap, callla = ||[az,, ¢z, ]| for all A, and the commutator [a,, , ¢z, ] # 0,
we conclude that
I[a, c]lljej=e > 0.

Therefore, the elements a = [ap]p and ¢ = [cp]p in [€]*° do not commute.
As a result, the algebra [€]* is non-commutative. O

Besides the observables “translated to infinity” considered in Lemma [3] we
give another example of a global observable.

ExXaAMPLE 6: Set I' = Z. Consider the following sequence of local tensor
products:

N—|N/2] [N/2]
CN = ® 1 ® ® a,
k=1 j=1

where 1 denotes the identity operator on a single site and a is a non-trivial
and non-zero single-site matrix with ||la|| < 1. This sequence looks like

=1,
co=1®a,
c3=1®1R®a,

a=101®a®a,
5=101®1®a®a,
6c=10101®a®a®a,
=111 1R®a®a® a,
=111 1R0a®a®a® a.

Note that the sequence (cy )y is uniformly bounded, and for any fixed local
observable b, ¢ asymptotically commutes with b. Therefore, (c¢y)n defines
a legitimate element in [C]*°. However (c¢y)n does in general not commute
with the sequences constructed in the proof Lemma [3] |

In the next section, we will prove that [€]* admits an interesting commu-
tative C*-subalgebra, namely the one generated by “macroscopic averages”.



Commutative subalgebras

We construct a C*-subalgebra of [€]*°, containing all “macroscopic averages”.
This algebra enjoys the property of being commutative, and therefore resem-
bles a classical observable algebra describing the macroscopic limit arising
from the underlying quantum statistical mechanics.

To illustrate this idea, we focus on the one-dimensional lattice i.e., I' = Z.
Let Ay C Ay C ... be a strictly increasing sequence of connected finite sub-
sets of Z, with |[Ax| = N and UyAxy = Z. For each region A = Ay, we
consider the linear operator (left-shift operator)

Ya: Ba — Ba,

uniquely defined by continuous and linear extension of the following map on
elementary tensors:

’yA(a1®...®aN)::a2®...®aN®a1, (7)

where a1,...,any € B. The operator 7, is a *-endomorphism of the algebra
Bp. Moreover, 'yf\v = id. We then define the averaged shift operator

1 N-1
= YA - (8)
§=0
The image of this operator,
BL =Ta(Ba), (9)

is a C*-subalgebra of B, consisting of the v-invariant elements.

DEFINITION 7: A sequence (ay)y is called a y-sequence if there exists a
finite subset Ag € I' and an element a,, € By, such that

YA <1A\A0 ® CLAO) , A DAy,

(10)
0, otherwise,

ap = 7ﬁo(a/\o) = {

where 1)\, denotes the identity on the complementary tensor factors. W

In what follows, we consider the x-algebra B?Yo C [Iper Ba generated
by all v-sequences, together with its image under the canonical projection
[B]go C [B]. The algebra [B]E’Y" enjoys remarkable properties; in partic-
ular, it can be completed to a commutative C*-algebra [B]5° [7, Prop. 6].
Moreover, the y-sequences constitute a continuous field of C*-algebras over
NU {oo} with limit [B]5°.

We begin with the following observation, which relates states on [B]
to translationally invariant states on the quasi-local algebra.

o¢]
v



REMARK 8: Each state on [B]5° canonically induces a translationally invari-
ant state on the quasi-local algebra [B]*°. Indeed, one can prove that the
map

Voo © [BI* = [BIF;
[an]a = [Valan)]a

is well-defined. In particular, applying a state w € S([B]3°) to an equivalence
class of y-sequences, yields

w([Falan)]) = woFso([anla)

If now we define
@ i=wo Y.,

then & is a translationally invariant state on [B]*°, since for any j

where

is the translation of j lattice sites.

In this way, the expectation values of y-sequences in & capture the macro-
scopic averages of local observables and thereby encode the distribution over
ergodic components of the corresponding translation-invariant state, see [3|
Chapter 4] for further details hereon. |

More importantly, [B]3° is a C*-subalgebra of [C]>.

o C[e]e.

PROPOSITION 9: [B]3

Proof. The assertion follows directly from the construction. We first prove it
for y-sequences; the general case then follows immediately from [7, Prop. 6].
For any 7-sequence (ap)p as in Definition E we claim that for all local
observables (by)s € B>

li =0. 11
A l[aa, ballla =0 (11)
To see this, fix Ag € I' and ap, € By, such that
A | N1
apn =7, (ap,) = N > 7 (Tava, ® aa,)s A D Ay, (12)
§=0

and ay = 0 otherwise. Let (by)a be a local observable supported on some
fixed A’ € T'. Since by acts non-trivially only on the tensor factors associated



with A/, and a, is an average over cyclic shifts, the commutator norm can
be estimated as

N—
llax,balla = ]tg 7 Ly © 0a,). ] (13)
1 N‘_ : '
<3 2 [PAGna @ an).bal| - (14
=0

For large A, most of the shifts ’yi move the support of ap, away from the
support of by. More precisely, at most |Ag|+|A’| terms in the sum correspond
to non-disjoint supports, and hence potentially non-zero commutators. For
all other terms, the supports are disjoint, so the commutator vanishes. Thus,

Ao + /]
o balll < PO g oy (15)

Since (by)a is a fixed local observable, ||ba]|s is uniformly bounded. Hence,

[faa,ballla = O(1/N),

and thus
Ah/mr l[an, ballla = 0. (16)

This shows that every 7-sequence (ap)p belongs to €. Passing to equiva-
lence classes via the canonical quotient map

q: H BA — [B]Na (17)
Aell
we obtain
laa]a = q((apr)a) € [€]. (18)
O

REMARK 10: The C*-algebra [B]5° properly contains the commutative C*—
subalgebra [B]2°, that is, the algebra of equivalence classes generated by
permutation symmetric sequences. In particular, [B]>° = C'(S(B)) [7, 14],
which is a direct consequence of the quantum De Finetti theorem. |

C*-algebraic construction of global observables in
classical statistical mechanics

Consider again the discrete set I' ¢ R%. To each = € I" we associate a unital
commutative C*-algebra endowed with a Poisson bracket, (Az,{-,-}). This
structure plays an important role in equilibrium thermodynamics within

10



classical statistical mechanics, as it provides a natural framework for formu-
lating the classical KMS condition [§].

For any finite subset A C I', we denote the tensor product @,cp Az by
Ay, and equip it with the local supremum norm || -||5. To define the Poisson
bracket, we first fix a dense Poisson *-subalgebra Ax C A, and then define
Ay accordingly for each finite subset A € I'. Then, in a fashion similar to
above, the algebra

D® = ¢ (an)p € [ Aa: V(ba)a € A, lim [[{an,batalla =0y,
Ael AT

where A% denotes the Poisson algebra of all local sequences, is a commuta-
tive x-subalgebra of [[ycr Aa. For a finite region A @ I', we define

D/O\O = {(CLA/)A/ S Al,_C[FAA/ 1 Wby € AA, Al’lg‘ll“ ”{CLA/abA}A’”A’ = 0},

where by is embedded canonically into A,/ for A” D A. Analogous to the
algebra C*°, it follows that

b - () .
Ael
Moreover, we can complete D> with respect to the norm ||-|| := supper ||-]/a,
yielding the C*-algebra
oo FOOII-II.

The pertinent quotient

(D] := D>/ B Aa
Aell
with @per Aa the ideal of vanishing sequences, is the classical analog of
[€]°°, and forms a C*-subalgebra of the quotient C*-algebra [A].. Note that
this algebra can be also obtained from D°, as follows from

D*/ P Ar = D>/ P -AA”-Hy

Aell Aell
with norm given by (@

REMARK 11: We recall the tail-o-algebra from classical statistical mechan-
ics:
Too 1= ﬂ F e, (19)
Aell
where .F5c is the o-algebra of events that only depend on “spins” located
outside A. The algebra [C]> resembles its quantum analog, canonically

formalized in a C*-algebraic way, i.e. without passing to any representation.
|

11



We have the following result, connecting [D]* with tail-measurable func-
tions.

PROPOSITION 12: Let X be a connected finite dimensional symplectic man-
ifold and consider the C*-algebra A = Cy(X). Let I' be a countable index
set and suppose A, = Cy(X) for all x € T'. Define the set

Q.= HXCC’

zel

equipped with the product topology. Then, for any equivalence class [a] €
[D]°°, there exists a unique bounded function

fa: 2 —=C
which is measurable with respect to the tail o-algebra

Tro 1= ﬂ o({wy :x €T\ A}).

Ael

Conversely, every function f : Q@ — C that is bounded and measurable
with respect to the tail o-algebra induces a net (aa)a of bounded functions
ap € £°(Qp), with (|laal|)aer € €°°(T"), such that, as A /T, the support
associated with any local observable eventually becomes disjoint from the
support of an. The net (ap)a is unique after fixing a reference configuration.

Proof. Note that D>/ @, Ax is dense in [D]*°. Given an equivalence
class [a] € [D]*® and € > 0, find [a] € D>/ @er An, such that

H[a] — [a]H = thUp HCLA/ — aA’HA’ < €.
A T
Based on this, we prove the result for [a] taken to be self-adjoint. The
latter is sufficient, since each element decomposes into a sum of two self-

adjoint elements. To this end, let us fix a (self-adjoint) representative net
(aar)pr € D>®. We can view it as a real-valued function on

Q=] X«

z€l
via the pull-back of the canonical projection w — my/(w) = w|pr = wyv, i.e.,
ap(w) := apr(wyr)  for all w € Q.
We then define a function f; : 2 — R by

fa(w) := limsup apr(w).
A AT

12



This function is well defined and hence unique for the given equivalence
class: if (bp/)as is another representative, then

N loar = anllar = 0,

and hence, for all w,

|fa(w) = fi(w)| <limsup [|aar — barl[ar = lim ||aar — bar[lar = 0.
A T AT

Since supy; [|aar||ar < oo (the sequence belongs to ¢>°), we have
falloo < sup flanflar < oo

We now prove that f; is tail-measurable. Fix any Ag € I'. Note first
that if g is any smooth compactly supported local self-adjoint element with
supp(g) C Ao, its Hamiltonian vector field X, is complete, and the (globally
defined for all ¢) flow ¢{ only acts on the local coordinates wy, € Qy,. For
A D Ay, let gp denote the canonical embedding of ¢ into A,/ Likewise,
each ax € Ap is a smooth local observable depending only on wy/. For any
w € §, with wps = w|ps, the chain rule then gives

d g

2 (an (9™ (wa)) = {anr, o} (i (i)

Integrating in ¢ we obtain

on (o (on)) — (o) = [ Lo an Y (on) s
0

This implies the uniform estimate

sup |an (7™ (war)) — anr(war)| < [t [{anr, gartlar-

N

Taking limsupy, »r and using (ap)par € @Oo, the right-hand side tends to 0.
It follows that for any ¢ in a compact set and any wy, € Qp/

lim sup |aas (@7 (war)) — apr(war)| = 0.

A T

By the definition of f; this entails
fa(®(w)) = fa(w), forallteR,

where ®f(w) := (¢](wa,),wr\a,)- This expression is well defined, since g
is localized on €,,, and hence its flow acts only on coordinates inside Ag.
Equivalently, for any configuration w € €2,

fa(pf(wao), wr\ae) = falwag,wr\a,), forallt € R,

13



This f; is invariant under local Hamiltonian flows supported in Ag. To
conclude, we take w, p € 2 with w\p\AO = P’F\AD- By standard constructions,
the group generated by compactly supported Hamiltonian diffeomorphisms
acts transitively on a connected, symplectic manifold. Hence, any two local
configurations can be connected by a finite composition of local Hamiltonian
flows supported in Ay. Hence, there exists a finite sequence of smooth local
Hamiltonians g1, ..., g, supported in Ay and times t1,...,t, such that

Pro = @i 00 @) (way)-
Since f; is invariant under each gpf; , we obtain
fa(pag, Prvag) = fa(wWags wriag)s
and hence f; does not depend on coordinates inside any local region. Thus,
VAo €T, Yw,p € Q, wlr\a, = plna, = falw) = fa(p).
This is exactly the definition of tail-measurability. Finally, note that since

”fa - deoo < limsup HG,A/ — dA’”A’ <€,
A T

the same result holds for f,, i.e. the function induced by the equivalence
class [a]. This proves the forward implication.

For the converse, let f be Z,—measurable. By definition, f is measur-
able with respect to every #p\,. This means that for every finite subset
A €T there exists a F\ y\—measurable function

e J] Xe—C
zel'\A

such that for all w € Q,
fw) = fa(wlra)-
These functions are automatically consistent: if A C A’, then

fa = faroraa, (20)

where 75/ A+ Qpr\a — Qp\ar is the natural restriction map. Indeed, since

f = fA o T\A = fA’ o T\A/ and TT\A? = TAA o T\A> equality follows
from the surjectivity of the projection maps 7p\x.

Fix A € I'. Choose any finite subset An € I'. From the above, we have
J = far ©7Tr\a,- By the consistency relation

fAA = fA’ o T'AI7 Aa fOI' all AI D AA.

14



It follows that for all @, &’ € Q satisfying

Dlras = 9 lr\Ag

we have
F(@) = fan (mr\an (@) = fan (Trias (@) = f(Q1)
Set
Ka:=AN(T\Ar) =A\ Aa.

Fix a reference configuration £ € 2 and define, for wa € Qa, a configuration
n € Qr\a, by

Nrky =walkas  1irvavas) = Elryauay)-
For any finite A" O A, define & :=rp/ 5, () and
CLA((AJA) = fA/((:))

We must show that this function is well defined.

Fix A’ D Aa. If two extensions 7,7’ € Qr\a, both have the same pro-
jection TA' AA (ﬁ) =TA A (ﬁ,) =we QF\A’7 then fAA (ﬁ) = fAA (ﬁ/) = fA’ ((:))
by the consistency relation . Second, if A,A’ D Ax, and n € Qr\a, I8
an extension of Qp\ (auary, Write @ := 7auar,a, (7), then again by consistency

relation
Tar(@) = faua(ravaran (7)), Ia(@) = faualravara, (7))

Hence the function does not depend on the choice of A’ D A,.

Each fys satisfies ||far]loo < || flloos 80 [laalloe < || flloo for all A. Thus
the family (aa)aer is uniformly bounded.

For each A €I, aa depends only on coordinates in
Kp:=A\ Aa.

Let b € Ay/ be any local observable supported in a finite A’ € I'. We may
take Aa in such a way that A D A’, whenever A D A’. Then one has
KaNA =@, s0 ap and b have disjoint supports.

To prove uniqueness of the construction, assume the same reference con-
figuration £ € ) was used in both constructions, and let

a = (aa)Aers a = (a/A)A@F

be two families obtained from the same 9, ,—measurable function f by the
above procedure (using the same &). For each finite A’ € T" denote by fas

15



and gys the corresponding Fp\ y/—measurable representatives of f obtained
in the two constructions. Hence, for every y € Qdp\,s pick any w € Q with
mr\a(w) = y and obtain

fa(y) = flw) = ga(y),

i.e. faor = gas as functions on Qp\p. Now fix A € I' and wa € Qa. Form
the partial configuration n € Qr\,, as in the construction, for any finite
A D A choose @ = rps o, (1); then by the definition of aa,a’y we have

an(wa) = far (@), apn(wa) = gar (@).

Since far = gar on Qp\ s it follows that

ap(wa) = ax(wa).

As wa was arbitrary, ap = a for every A € I', and hence the two families
coincide.

O]

Further Research

This work opens new avenues for future research in this field. Some potential
directions are summarized below.

« Investigate the state space of the non-commutative C*-algebra [C]*, in
particular whether it forms a Choquet simplex (Bauer, Poulsen, etc.)
and characterize extremal states via a suitable notion of ergodicity [5].

e Study the dynamics of the algebra, including automorphisms and
strong continuity, with applications to quantum spin systems where
each local C'*-algebra is a matrix algebra.

o Explore the Kubo-Martin-Schwinger (KMS) condition for [B]3°, the
existence and properties of KMS states, and their relation to translation-
invariant states on the quasi-local algebra [3], 4] [IT].

o For the commutative C*-algebra [D]*°, examine the classical KMS
condition via the Poisson bracket and compare it with the Dobrushin-
Lanford-Ruelle (DLR) equilibrium condition [8] [6].
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